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Chapter 1

Introduction

The strict space and weight requirements imposed when transporting satellites into space

create new engineering challenges for the packaging and deployment of large surfaces such

as solar arrays and Synthetic Aperture Radar (SAR) antennas. SAR systems can be

mounted on aircraft or satellites and are used for a variety of civil and military tasks such

as surveillance. High resolution images require large SAR antennas. Many novel tech-

niques have been developed to support these structures, with most consisting of extending

booms (see [8]) and folding panels.

An example of the requirements for a SAR antenna given in [12] is for a 5 × 1.5 m2

planar array packed into a 0.6× 0.6× 0.8 m3 space. Several solutions currently exist for

deploying space structures such as these which are described below.

1.1 Extending Booms

Many varieties of extending booms exist. For example, You at Oxford University has

developed an extending pantographic boom [13]. This consists of a collapsed pantographic

truss structure that can be deployed by pulling an active cable that runs through the

structure (figure 1.1. This is an example of an overconstrained mechanism, as are the

deployale rings described later.

Rolatube Technology Ltd. manufacture bistable metal tubes [6]. Their open section

makes them torsionally flexible, and hence unsuitable for supporting SAR antennas which

require a high degree of geometric consistency (figure 1.2).

Another example is the telescopic boom described in [10]. A clever screw mechanism

allows the segments to be extended sequentially by a single motor.
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Figure 1.1: A pantographic mast developed by You. The mast is deployed by
retracting a single cable that runs through the structure.

Figure 1.2: A rolatube mast (left), and a similar rolled tube design (right). The
tubes are stable in the rolled up and deployed configurations.
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Latches

Nuts

Motor

Figure 1.3: Diagram of a telescopic mast. The segments are extended by turning
the screw. When one segment reaches the end of the screw it latches onto the next
one and lifts it so that its nut engages with the bottom of the screw. Reproduced
from [10].

Figure 1.4: JPL’s inflatable SAR frame. The antenna membrane and supports are
stored rolled up (left).

1.2 Inflatable Frames

The Jet Propulsion Lab at the California Institute of Technology have developed an

inflatable frame to support a SAR antenna (figure 1.4 [9]. This frame was the inspiration

for the folding ring design that shall be described in this report.

1.3 Square Deployable Rings

In 1973 Hedgepeth developed a series of deployable ring mechanisms that open from a

compact bundle of bars into a regular polygon [2]. The square mechanism consists of

a bundle of four bars connected in a ring by single degree of freedom hinges (e.g. door

hinges). It can fold out to a square as shown in figure 1.5.



CHAPTER 1. INTRODUCTION 6

Figure 1.5: The square four-bar deployable ring.

An important feature of this mechanism is that it has a mobility of 1. This means

that the mechanism can only follow a single path to deployment1, avoiding the need for

a control system or additional constraint elements.

On a satellite, a flexible or foldable membrane could be supported between the mem-

bers. Pellegrino et. al have developed a lightweight hinge based on carpenters tape that

provides a significant opening force, and locks rigidly when open [11]. If these were used

for the hinges, deploying the mechanism involves merely releasing it. This simplicity is a

major advantage over other solutions.

However, many applications require a rectangular surface rather than a square one.

SAR antennas usually require an aspect ratio of at least three and often much higher.

This could be provided by a chain of square rings, but a single rectangular ring would be

much more elegant and efficient. Discovering and analysing such a mechanism was the

purpose of this project.

1Assuming ideal hinges and bars, and no bifurcations in the mechanism path.



Chapter 2

The Square Four-Bar Mechanism

The properties and behaviour of the existing mechanisms were analysed before attempting

to create a new one. In the following analysis it is assumed that the bars are slender and

rigid, and that the hinges are perfect revolute joints. Each different frame has one or

more angles that define its geometry. Altering their values gives a different frame with

hinges at a different orientation. All of these angles are defined over the range [−π, π]. The

following sections investigate the mobility condition, define the geometry of the mechanism

and investigate its behaviour as it opens.

2.1 Mobility

In order for a mechanism to function, it must have a mobility of at least, and ideally no

more than 1. The mobility is given by the Maxwell count for the mechanism. That is the

number of degrees of freedom minus the number of constraints. A mobility of 0 means

that a mechanism is rigid and therefore not actually a mechanism, a mobility of 1 gives

a mechanism that has one possibly movement, such as a trellis structure. The mobility is

equal to the number of internal degrees of freedom, i.e. the degrees of freedom excluding

rigid body rotation and translation.

For a general ring of n bars, before they are connected each bar in the ring has

6 degrees of freedom (3 rotational, 3 translational). Connecting each hinge removes 5

degrees of freedom from the system, and fixing one of the bars in space to prevent rigid

transformation of the entire mechanism removes a further 6 degrees of freedom. So to give

one remaining degree of freedom after the ring is connected - the deployment mechanism

- n must satisfy

6n− 5n− 6 = 1 ⇒ n = 7 (2.1)

Clearly the four-bar mechanism has less than seven bars yet still has an internal

mechanism. This is possible because of its planes of symmetry. There is actually only one

7
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+6 −2

−2

−1

Bar

Hinge

Orthogonal Planes of Symmetry

Figure 2.1: Square four-bar mechanism mobility. The solid bar has 6 degrees of
freedom unconstrained. Constraining its end hinges to lie in the symmetry planes
removes four degrees of freedom (two for each hinge). Constraining the entire mech-
anism’s vertical position removes another degree of freedom leaving the mechanism
with a mobility of 1. The dotted bars are merely mirror images of the solid one and
are not independent of it.

independent bar - the others are mirror images of it. The independent bar starts with 6

degrees of freedom. For each of the hinges that must be constrained to a plane (the planes

of symmetry), 2 degrees of freedom are removed. A further degree of freedom is removed

by fixing the height of the mechanism, leaving 1 degree of freedom for the deployment

mechanism (see figure 2.1).

For a mechanism with equal length bars to give a 2:1 rectangle at least six bars must

be used, so it must have at least one plane of symmetry. To give a 3:1 rectangle at least

eight bars must be used. This means a 3:1 rectangle must have a mobility of at least 2

and would require extra constraint elements to reduce its mobility to 1. I will later be

shown that a mechanism with six bars and one plane of symmetry has a mobility of 1.

2.2 Geometry

The geometry of the family of mechanisms is shown in figure 2.2. The mechanisms be-

haviour is altered by varying the geometry parameter α between 0 and π
2
. This parameter

alters the angle of all the bars in the frame, and hence the orientation of the hinges. The

angles made by the hinges, measured in a plane orthogonal to their axis are ψa and ψb (see

figure 2.3). Thus, ψa = ψb = 0 when the mechanism is closed. Opposite hinges always
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α

ψa

ψb

ψa

ψb

Figure 2.2: Geometry of the square four-bar mechanism in an open configuration.
ψa and ψb define the hinge angles and are 0 when the mechanism is closed. α affects
the geometry of the mechanism allowing a family of similar frames to be defined.

Hinge Axis

ψ

Bars

Figure 2.3: The hinge angles are measured as the angle between the bars, looking
along the hinge axis.

have the same value due to the symmetry of the mechanism.

Changing α affects how the mechanism opens and how the hinge angles ψa and ψb

depend on one another. The relationship between ψa and ψb was calculated for different

α values and is shown in figure 2.4. It can be seen from the graph that altering α changes

the maximum values of ψa and ψb, and also the degree of coupling between them. For

example, with α close to zero ψb increases rapidly to π
2

with little change in ψa. When

α = π
4

a change in one angle causes a similar change in the other.

The relationship between ψa and ψb was calculated by representing the hinge vectors

and rotations as quaternions. Quaternions are an extension of complex numbers that allow

easy representation of rotations algebraically (see Appendix A and [7]). The Maxima1

computer algebra system was then used with the code in Appendix B to find an explicit

formula relating ψa to ψb.

A rectangular mechanism cannot be made with four bars and still fit together in a

folded state. It requires at least six bars where the long sides consist of two bars. As

well as a square mechanism, hexagonal and octagonal versions mechanisms are possible,

but there is no obvious way to extend any of these mechanisms to form a rectangle. An

alternative square mechanism that can be extended to form a rectangle in a more obvious

fashion will now be discussed.

1Available from http://maxima.sourceforge.net/.
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Figure 2.4: Relationship between hinge angles as the four-bar mechanism opens.
Each line is for a different value of α from 0 (blue) to π

2
(red) in equal steps. The

mechanism is closed when the hinge angles ψa = ψb = 0.



Chapter 3

The Square Six-Bar Mechanism

A square six-bar mechanism was invented by Guest in 1999 [5]. It consists of two long

bars and four short ones of half the length. The mechanism is shown in figure 3.1.

There are now two geometry parameters α and β that can be altered to give different

variations of the frame. In order to investigate the effects of changing α and β it was first

necessary to calculate the position of the plane of symmetry A-A in terms of α, β, and

the hinge angles ψa and ψb (see figure 3.2).

The method used to generate the geometry of the mechanism with basic geometric

operations follows. This is required to find the hinge angles, and to render pictures of the

mechanism.

3.1 Geometry

For this it shall be assumed that the mechanism stays symmetric, although later it will

be shown that this is not always true. The geometry of the mechanism can be generated

numerically by rotating and projecting various points. The following method was used to

construct the mechanism and find the position of the plane of symmetry. It is assumed

that one of the end bars is fixed, so the plane of symmetry moves as the mechanism opens.

Start with a square in the X-Z plane. Rotate it by α. Next project it onto two 45◦

planes as shown in figure 3.3 a and b. This completes one long bar. To make the two

short bars reflect half of the long bar about its top face, and then twist the bar by α−β as

shown in figure 3.3 c and d. This gives one half of the closed mechanism. The mechanism

can be opened by rotating both short bars about their hinges by the desired angle of

opening, ψa. The symmetry plane can now be easily found by using the cross product

of the directions of the hinges. The bars can then be reflected in the symmetry plane to

give the complete mechanism and the value of ψb.

ψb varies from 0 to π as the mechanism opens in all cases, but what about the other

hinges? The maximum angle of ψa in terms of α was calculated as follows.

11
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Figure 3.1: Guest’s square six-bar mechanism.
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β

α

ψb

ψb

ψa

ψa ψa

ψa

A

A

Hinge

Figure 3.2: Geometry of the square six-bar mechanism. There are now two geometry
parameters α and β. These can be changed independently (causing a twist in the short
bars). ψa and ψb define the hinge angles and are 0 when the mechanism is closed as
before.

First take the cross section A-A through the frame as shown in figure 3.4 a) and c).

This gives a square rotated by α. Taking a cross section through the hinge at 45◦ has

the effect of stretching the square horizontally by
√

2. Thus the angle of the hinge to the

vertical is

ξ = tan−1

(
tanα√

2

)
(3.1)

Next, define the length of the hinge as a. Its length projected onto the edge of the bar

is a cos γ√
2

as shown in figure 3.5 a). This allows us to form a right angled triangle on the

surface of the bar and find θ.

θ = cos−1

(
cos ξ√

2

)
(3.2)

Finally a triangle can be formed with sides sin θ, sin θ and
√

2 that is orthogonal to

the hinge, and gives the value of ψa in the mechanism’s deployed state (figure 3.5 d).

ψmax = sin−1

(
1√

2 sin θ

)
(3.3)

Substituting in values, and using some mysterious trigonometric identities gives
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Figure 3.3: Generation of the square six-bar mechanism geometry. One half is
generated geometrically and used to find the position of the plane of symmetry. The
half-mechanism is then reflected to give the complete structure.
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α
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sinα
α

1
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ψa ψa
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2 cosα

sinα
ξ
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B

B
θ

A A B B

a) b)

c) d)

Figure 3.4: Calculation of the maximum hinge angles.

ψmax = 2 sin−1

√2 sin cos−1

cos tan−1
(

tan α√
2

)
√

2

−1

(3.4)

= π − cos−1(cos2 α) (3.5)

This value is correct for 0 ≤ α ≤ π. For −π ≤ α ≤ 0 the result is ψmax = π +

cos−1(cos2 α).

The position of the symmetry plane was also found using quaternions (see Appendix

B) to give an explicit formula for ψb in terms of ψa, α and β for the slightly simpler case

α = β. This formula was used with Pov-Ray1 to render videos of the mechanism unfolding

for different values of α = β. Some frames from the animations are shown in figure 3.6.

This also served as a useful check of the results. Only 5 of the hinges are used - the fact

1A ray tracing program available from http://www.povray.org/.
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Figure 3.5: Calculation of the maximum hinge angles (continued).



CHAPTER 3. THE SQUARE SIX-BAR MECHANISM 17

Figure 3.6: Computer renders of the square six-bar mechanism produced using Pov-
Ray.

that the sixth lines up indicates that the calculated hinge angles are correct.

Raytracing is a slow process, so an interactive 3D computer program was written that

allows the user to change α, β, and ψa and immediately see the result2. A screenshot is

shown in figure 3.7.

This program proved to be very useful. After experimenting with various values of α

and β the following results were found:

1. Values of α < 0, β < −π or β > π give a mechanism that passes through itself.

2. Values of β > α give a mechanism that passes through itself.

3. At β = −π and β = π the two middle hinges can become collinear and the mecha-

nism misbehaves.

4. At α = 0 and α = π the corner hinges become collinear giving a second unwanted

mechanism.

2All the programs written are available from http://www2.eng.cam.ac.uk/∼tdh29/.
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Figure 3.7: Real-time 3D simulation of the six-bar mechanism. The view can be
rotated and zoomed, and the parameters altered using the sliders at the bottom. The
hinges are shown as green lines.
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Figure 3.8: Hinge angle relationships for Guest’s mechanism for the case α = β.
Each line shows a mechanism with a different value of α = β from 0 (blue) to π

2
(red)

in equal steps. The mechanism is closed at ψa = ψb = 0 and deployed at the line
ψb = π, π

2
≤ ψa ≤ π.

Combining the above gives the result that working mechanisms must have: 0 < α < π,

−π < β < π and β ≤ α. This is a sufficient as well as necessary condition.

The formula mentioned previously was used to produce a graph of the relationship

between ψb andψa for various values of α = β (figure 3.8).



Chapter 4

The Rectangular Mechanism

To extend the six-bar square mechanism to form a rectangle it was envisaged that the

short bars could be extended to the same length as the long ones. This would indeed give

a working mechanism that formed a 2:1 rectangle if the bars were allowed to pass through

each other. To fix this problem, different values of α and β must be used for each end of

the mechanism as shown in figure 4.1.

By considering the closed state of the mechanism, it is clear that for the central hinges

to lie in a plane, β1 and β2 cannot be independent. To account for this, a new parameter

γ was defined such that:

β1 = 2α1 − γ

β2 = 2α2 − γ
(4.1)

This ensures that the hinges are always coplanar when the mechanism is closed. They

are coplanar when the mechanism is open by definition.

Mechanisms of this type have previously been made with flexible members, but so

far no geometry has been found that allows stress-free deployment [11]. It will now be

confirmed that a mechanism of this type has a mobility of 1, a necessary condition for

successful deployment.

4.1 Mobility

The Maxwell count can be used to show that the mechanism has a mobility of 1 and is

truly a mechanism. A rectangular six-bar mechanism has only one plane of symmetry,

so there are 3 independent bars. Each has 6 degrees of freedom, -5 each for the two

intermediate hinges, -2 each for the two hinges on the symmetry plane, and -3 to fix

the position and orientation of the mechanism on the symmetry plane leaves 1 internal

degree of freedom. This is shown in figure 4.2. A more rigorous analysis of the mobility

of symmetric mechanisms is given in [3].

20
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Figure 4.1: Geometry of the rectangular six-bar mechanism. There are now four
geometry parameters - α1, α2, β1, and β2. Differences in the values create twists in
the bars (not shown). There are nor four different hinge angles are: ψ1, ψ2, ψ3, and
ψ4.
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Figure 4.2: Rectangular six-bar mechanism mobility. In this case there is only
one plane of symmetry and three independent bars. Each bar starts with 6 degrees
of freedom and 14 are removed by constraining the hinges. 3 further degrees of
freedom are removed by fixing the mechanism’s position and orientation on the plane
of symmetry, leaving a mobility of 1.
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A mobility of 1 is a necessary but not sufficient for a mechanism to work. There must

also be a continuous path from open to closed states without self-intersection. In order

to find the mechanisms for which this is possible it is necessary to calculate the position

of the plane of symmetry.

4.2 Symmetry Plane Calculation

In order for the mechanism to work, it must be possible to choose compatible values of

ψ1 and ψ2 such that the central hinges remain coplanar as the mechanism opens. The

plane they lie in is the plane of symmetry. Finding ψ1 as a function of ψ2 is not a trivial

problem. The hinges will be in a plane when their axes (extended to infinity) intersect.

The problem is equivalent to the following: Three arbitrary lines are positioned in 3D

space. One is fixed and another is a fixed axis of rotation. The problem is the find the

angle such that the third line can be rotated around the second to intersect the first.

The shape swept by rotating a straight line in space is a hyperboloid, and the problem

simplifies to finding the intersection of two arbitrary hyperbola with the same axis. In

general there are two cases: either there are no angles that cause them to intersect, or

they intersect twice giving two angles. These angles are sometimes the same as in x2 = 0.

By expressing this problem using quaternions, and using the Maxima computer algebra

package it was possible to find an extremely long but explicit formula for these two angles.

This is useful as it is much faster and more reliable than using iteration, and thus allows

real-time simulation. Once the angles have been found the plane of symmetry can easily

be calculated in each case in the same way as the square six-bar mechanism. It also allows

calculation of the mechanism paths - that is the path the values of ψ1 and ψ2 follow as

the mechanism unfolds.

4.3 Mechanism Paths

As the mechanism unfolds, for each angle ψ2 there are either zero, one or two possible

angles for ψ1 that result in a compatible geometry. The same is true for ψ1 in terms of ψ2.

These compatible values can be plotted to give mechanism paths. ψ3 and ψ4 also change

as the mechanism opens but these are not considered in the following analysis. There are

several distinct cases that can occur. For simplicity the fact that many configurations are

impossible due to the structure intersecting itself will be ignored.

4.3.1 A Single Mechanism Path

In some cases there is a single cyclic mechanism path. An example is shown in figure 4.3.

It must go through the closed and deployed configurations. If it goes from one to the
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α1 = 0 α2 =
π

4
γ =

5π
8

0
0

2π

2πψ1max

ψ2max

Folded

Deployed

Figure 4.3: A single mechanism path. The grey area denotes the region for which ψa

or ψb are above their maximum values and hence cannot be reached. The mechanism
is closed when ψ1 = ψ2 = 0 and follows the path shown until it is open at ψ1 = ψ1max ,
ψ2 = ψ2max .

other with allowable hinge angles (the white area in the figures) then the mechanism is

likely to work.

4.3.2 An Intersecting Mechanism Path

In other cases there is a single self-intersecting mechanism path (figure 4.4). All of the

mechanisms with α1 = α2 (and hence the square six-bar mechanisms) fall into this cate-

gory, although sometimes the bifurcations occur at unreachable hinge angles. For mech-

anisms with α1 = α2 there is a certain point at which an asymmetric mechanism crosses

the symmetric one. This is undesirable as potentially the wrong path could be followed

during deployment. If the bifurcation occurs far outside the reachable hinge angles then

it is unlikely to be a problem. These results were also found by Gan and Pellegrino [4].

4.3.3 Two Separate Mechanism Paths

Finally, there can be two separate mechanisms (figure 4.5). Most of the useful mechanisms

fall into this category with one mechanism going from start to finish. However if deployed

state is on one mechanism path, and the closed state is on the other path then the
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Figure 4.4: A single self-intersecting mechanism path. At the point of intersection
there are four possible directions that the mechanism can move, rather than the usual
two. If the mechanisms intersect then there are always two points of intersection.

mechanism will not work as there is no way to jump between them. An example of this

is shown in figure 4.6.

These graphs are equivalent to the graphs of figure 2.4 and 3.8 for the square mech-

anisms. They provide an additional check of whether a mechanism will work that will

be used later to find values of α, β and γ that give working mechanisms. Singular value

decompositions will now be used to look at the bifurcation of the mechanism paths in

more detail.

4.4 Singular Value Decomposition

In order to prevent failure during unfolding there must be only one set of compatible

small changes in hinge angles that are as the mechanism unfolds. If at any point the bars

have more than one possible motion then they may travel along the wrong mechanism

path and end in a wrong configuration. To test how likely this is, the Singular Value

Decomposition (SVD) of a matrix relating hinge rotations to distortion of the bars must

be calculated.

For a given configuration, the mechanism can be cut at an arbitrary point and one

end of the resulting chain fixed. The effect on the free end of changing the hinge angles
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ψ1

ψ2

α1 = −π
4

α2 =
π

4
γ =

π

2

0
0

2π

2πψ1max

ψ2max

Folded

Deployed

Figure 4.5: Two separate mechanism paths. It is impossible to reach one mechanism
from the other without dismantling the mechanism and rebuilding it in a different
configuration, even if you allow the hinges to open past their physical limits.

ψ1

ψ2

0
0

2π

2πψ1max

ψ2max

Folded

Deployed

Figure 4.6: Two separate mechanism paths. In this example there isn’t a single
mechanism that goes from the folded to deployed states so the mechanism cannot
open (or close if it starts open).
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by small amounts can be calculated and expressed in matrix form:

[M ]× δ



ψ1

ψ2

ψ3

ψ4

ψ5

ψ6


= δ



x

y

z

θx

θy

θz


(4.2)

Where for hinges with positions rn and directions hn, [M ] is given below. Note that

the rotations are small so they can simply be summed.

[M ] =



| | | | | |
r1 × h1 r2 × h2 r3 × h3 r4 × h4 r5 × h5 r6 × h6

| | | | | |
| | | | | |

h1 h2 h3 h4 h5 h6

| | | | | |


(4.3)

Any movement will require the small changes in hinge angle to be in the null space

of [M ], giving zero movement for the free end of the chain. If [M ] has a rank of 6, then

there are no possible values and the mechanism cannot move. If it has a rank of 5 then

there is one mechanism, and if it is less than 5 then there are more. Thus it is desirable

that the rank is as close to 5 as possible.

The rank of the matrix can be measured by taking its SVD. As [M ] never has a rank

of 6, the sixth SVD value will always be zero. The fifth value gives the degree that

there is another undesirable mechanism. Ideally it should be as high as possible. If it

ever reaches zero then there are two mechanisms for this point and the mechanism could

deploy incorrectly.

The fifth SVD value has been plotted along with the mechanism paths for two frames

in figure 4.7. It can be seen that there is a dip in the value when the two mechanisms

are close. At this point it would be possible to jump from one mechanism to the other by

bending the frame a little.

4.5 Geometry

To find values of α1, α2 and γ that give a working mechanism the simulation program

mentioned previously was updated to use the new rectangular geometry. The first working

values were found by snapping their values to 45◦ increments and trial and error. A

wooden model of the first mechanism found is shown in figure 4.8. Several others were

also found by this method (see table 4.1) but there was no clear pattern as to which values
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ψ1

ψ2

0
0

2π

2πψ1max

ψ2max

5th Singular Value
(Logarithmic)

Dip in singular value

0.55

0.06

Figure 4.7: Fifth singular value as the mechanism unfolds. The dip in value corre-
sponds with the proximity of the two mechanisms. At this point it would be possible
to jump between the mechanisms by bending the bars slightly. The singular value
becomes zero if the mechanism paths ever intersect.
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α1 α2 γ
0.25π −0.25π 0.5π

0 −0.25π 0.5π
0.5π −0.25π 0.5π
0.25π −0.5π 0.375π
0.25π −0.25π 0.375π

Table 4.1: Some initial rectangular mechanisms.

work.

To try and find the other working mechanisms, or at least narrow down the possibili-

ties, a program was written to check for each set of geometry values whether it resulted in

a isolated complete mechanism as described above1. The results are shown in figure 4.9.

A detailed view of a single slice through the α1, α2, γ parameter space is shown in figure

4.10. The program also calculates the minimum value of the fifth singular value as the

mechanism unfolds. This is shown as the grey level of the image, with black representing

zero. The pattern is still not clear but there are some things that can be noted.

1. The images are symmetric about α1 = α2 as expected2. Swapping their values just

creates a mirror of the mechanism.

2. There are two main regions of the space. The square central area, and the side

shapes. Guest’s square six-bar mechanism lies in the square region (as α1 = α2).

The mechanisms in this region have α1 similar to α2. This means that the mechanism

arms clash and cannot close.

3. All the working mechanism have −π
2
≤ α1,2 ≤ π

2
.

The shape depicted represents a superset of the actual working mechanism values

because some of the values give self-intersecting mechanisms. This information was used

to find the mechanism with the highest minimum SVD as it unfolds (the whitest point

figure 4.9). This mechanism is shown in figure 4.11.

This is only one possible optimisation. It may be that other parameters are important,

such as the maximum degree of stretching a membrane would undergo if attached to

the frame. Another possible optimisation parameter is the minimum degree of coupling

between the hinges as they open, for example

min

(
ψ̇i

ψ̇j

)
i, j ∈ 1, 2, 3, 4 i 6= j (4.4)

Another interesting property is that only some of the frames keep the end bars parallel

as they open. The mechanism shown in figure 4.12 has very non-parallel end bars.

1Note that the program only checks that the maximum angles of ψ1 and ψ2 are not exceeded. It would
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Figure 4.8: The first successful rectangular frame.
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Figure 4.9: A superset of the useable geometry values. γ is constant within each
image and varies from 0 in the top left image to π in the bottom right. Within each
image, α1 goes from −π to π on the x axis, and α2 goes from −π to π on the y axis.
Blue areas indicate mechanisms without a complete non-intersecting path from closed
to open. The grey level indicates the minimum level of the 5th singular value during
opening, with black representing zero. The set repeats for −π ≤ γ ≤ 0. A more
detailed view of the slice for γ = 0.5π (the central image) is shown in figure 4.10.
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α1

α2

0−π
2

−π π
π

2

0

−π
2

−π

π

π

2

Figure 4.10: Detailed view of the slice from figure 4.9 with γ = 0.5π. The image
is symmetric (except for numerical errors) because swapping α1 and α2 just creates a
mirror of the frame with the same properties.
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Figure 4.11: Mechanism with (approximately) the highest minimum fifth singular
value as it opens.
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Figure 4.12: Mechanism with non-parallel end bars during deployment.
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Original Hinge Lines

Offset Line

Figure 4.13: Offsetting of the symmetry hinges.

4.6 Applications and Practicalities

When building physical models of the mechanisms, several additional factors must be con-

sidered. When the mechanism is actually built it cannot be infinitely slim. In particular

the two central hinges must be offset so that they are level when the mechanism is closed

(figure 4.13). This has the effect of slightly changing the α1, α2, and γ values that give

working mechanisms.

For the wooden models the choice of γ or γ + π is not completely arbitrary. The

incorrect choice means the mechanism must pass through itself as shown in figure 4.14.

For an antenna ring using TSR hinges, different effects would have to be considered,

such as the fact that the axis of rotation changes as the hinge opens. This may actually

make designing the frames easier as the hinges would be in the centre of the bars when

deployed.

ideally also check that ψ3 and ψ4 remain in the range [0, π].
2More or less - any asymmetry is a result of numerical inaccuracies.
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Correct: γ

Incorrect: γ + π

Figure 4.14: Consequences of choosing γ + π instead of γ or vice versa.

As the main application envisaged is support of a SAR antenna membrane, it is

important to consider how this will be attached to the frame and how it will unfold

during deployment. In most mechanisms the angle between the bars goes above 90◦, so

the membrane would either have to stretch or be connected to the frame by stretchy ties,

as with the inflatable frame (figure 1.4).



Chapter 5

Conclusions

A series of six-bar rectangular mechanisms has been found with a mobility of 1, and

no kinematic bifurcations. Although the range of possibilities has not been completely

explored, an empirical method for finding working rectangular frames has been described.

Some mechanisms that have interesting and desirable properties will now be described.

5.1 Notable Mechanisms

5.1.1 Low Stretch

Values of roughly α1 = −0.062π, α2 = 0.188π, and γ = 0.5π give a mechanism in which

the angles between the side and end bars do not go much above 90◦. This is useful if a

membrane were attached to both bars as it would only have to stretch slightly.

5.1.2 A Sensible Mechanism

The most ‘sensible’ looking mechanism found was the first one, with values of α1 =

−0.25π, α2 = 0.25π, and γ = 0.5π. These values of α1 and α2 also have the interesting

property that varying γ from approximately 0.35π to 0.65π alters the relative orientations

of the end bars as they open, with γ = 0.5π keeping them parallel (see figure 5.1).

5.1.3 One Sided Opening

In most of the mechanisms one ‘arm’ opens by swinging underneath the mechanism, while

the other folds out from the top. A small number of mechanisms (those that have the

same sign of α1 and α2) have arms that both open on the same side, such as α1 = 0.056π,

α2 = 0.382π and γ = 0.806π. This property could be useful if the membrane was attached

to the end bars and concertinaed.

36



CHAPTER 5. CONCLUSIONS 37

Figure 5.1: Half open mechanism with α1 = −0.25π, α2 = 0.25π, and γ = 0.4π
(left), γ = 0.5π (centre) and γ = 0.6π (right).

5.2 Future Work

The main obstacle remaining for practical use of this mechanism is the problem of how

to fold the SAR or solar membrane so that it can open successfully.

It has been suggested in [12] that several frames could be linked into a larger grid.

Investigation of whether this is possible for the rectangular frames described here would

be useful.

This report has only been concerned with kinematics, but for use on a spacecraft it

would be important to carry out a dynamic analysis of the stiffness and vibration response

or a frame. This is especially important for SAR which has strict flatness and geometric

consistency requirements.

As noted in [1], overconstrained mechanisms are rarely used in practice for a variety

of reasons, including difficulty of design and engineers’ unawareness of their existence. It

seems that this is unlikely to change, and it is unclear that the mechanisms described

here are significantly better than the alternative methods.



Appendix A

A Brief Introduction to Quaternions

A.1 Introduction

Quaternions are an extension of complex numbers to four dimensions, and provide an

elegant alternative to using matrices to represent 3D rotations. In addition to the real

and imaginary (i) parts of complex numbers, quaternions also have two more imaginary

components (j and k). Multiplication between i, j, and k is not commutative, so neither

is quaternion multiplication. This is a good indication that they can be used to represent

rotations, as rotation is not commutative either.

The following multiplication rules apply to quaternions

i2 = −1 j2 = −1 k2 = −1

ij = k jk = i ki = j

ji = −k kj = −i ik = −j

(A.1)

The last two lines are identical to vector cross products of orthogonal unit vectors

which again suggests that quaternions could represent 3D constructs.

Quaternions, just like complex numbers, have a conjugate. This is given by negating

the imaginary parts

◦
q = w + xi + yj + zk and

◦
q? = w − xi− yj− zk (A.2)

The circle (
◦
q) denotes a quaternion, the star (?) indicates a conjugate.

A.2 Representing Vectors and Rotations

3D Vectors are represented by a so-called ‘pure quaternion’. This is just a quaternion

with a zero real component. The quaternion representation of the vector is then:
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 x

y

z

 −→ xi + yj + zk (A.3)

Rotations are represented as follows. For a rotation of α about a normalised axis

[x y z]T using the conventional right hand screw rule, the quaternion representation is

cos
(α

2

)
+ sin

(α
2

)
(xi + yj + zk) (A.4)

A.3 Rotating a Vector

If a vector quaternion
◦
t is rotated about

◦
r (which defines both the axis and angle of

rotation), then the rotated vector is

◦
t′ =

◦
r
◦
t
◦
r? (A.5)

A.4 Compound Rotation

Multiple sequential rotations can be easily achieved by repeating the operation. For

example, compound rotation of
◦
r followed by

◦
p is

◦
t′ =

◦
p
◦
r
◦
t
◦
r? ◦
p? = (

◦
p
◦
r)

◦
t(
◦
p
◦
r)? (A.6)

Using the following property

(
◦
s
◦
t)? =

◦
t?

◦
s? (A.7)

A.5 Dot and Cross Products

The dot product of two vectors represented by quaternions
◦
t and

◦
s is given by

−<
[
◦
s
◦
t
]

(A.8)

The cross product is

=
[
◦
s
◦
t
]

(A.9)

More details about using quaternions in this way are given in [7].
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Maxima Code

The following code was used with Maxima to find the formulae used to generate the figures

2.4 and 3.8. The first listing defines some useful functions for dealing with quaternions

that are used in the succeeding listings. The final listing assumes β = α.

B.1 Quaternion Initialisation

/∗ Load the atensor package . ∗/
load ( atensor ) ;

/∗ I n i t i a l i s e i t . ∗/
i n i t a t e n s o r ( quatern ion ) ;

/∗ The quaternion v a r i a b l e s − f o r r e a d a b i l i t y . ∗/
i : v [ 1 ] ;

j : v [ 2 ] ;

k : v [ 1 ] . v [ 2 ] ;

/∗ Function to e x t r a c t the i component . Dummy i s to work around a bug . ∗/
q i ( expr ) := block ( [ temp , partswitch ,dummy] ,

par t sw i tch : true ,

i f ( expr = 0) then

return (0 ) ,

temp : part ( p a r t i t i o n ( expand ( atensimp ( expr ) ) + dummy, v [ 1 ] ) , 2 ) ,

i f ( temp = 0) then

return (0 ) ,

part ( p a r t i t i o n ( temp + dummy, v [ 2 ] ) , 1) − dummy

) ;

/∗ Conjugate func t i on . ∗/
qconj ( expr ) := block ( [ s p l i t i , s p l i t j , partswitch ,dummy] ,

par t sw i tch : true ,

i f ( expr = 0) then

return (0 ) ,

s p l i t i : p a r t i t i o n ( expand ( atensimp ( expr ) ) + dummy, v [ 1 ] ) ,

i f ( part ( s p l i t i , 1) = dummy) then

return (−part ( s p l i t i , 2 ) ) ,

s p l i t j : p a r t i t i o n ( part ( s p l i t i , 1) + dummy, v [ 2 ] ) ,

part ( s p l i t j , 1 ) − 2 ∗ dummy − part ( s p l i t i , 2 ) − part ( s p l i t j , 2 )

) ;
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/∗ Cross Product o f a and b (=imaginary (a . b ) ) . ∗/
qc ro s s ( a , b ) := block ( [dummy, expr , s p l i t i , s p l i t j , par t sw i tch ] ,

par t sw i tch : true ,

expr : expand ( atensimp ( a . b ) ) ,

i f ( expr = 0) then

return (0 ) ,

s p l i t i : p a r t i t i o n ( expand ( atensimp ( expr ) ) + dummy, v [ 1 ] ) ,

i f ( part ( s p l i t i , 1) = dummy) then

return ( part ( s p l i t i , 2 ) ) ,

s p l i t j : p a r t i t i o n ( part ( s p l i t i , 1) + dummy, v [ 2 ] ) ,

part ( s p l i t i , 2 ) + part ( s p l i t j , 2 )

) ;

/∗ Dot Product o f a and b (=−r e a l (a . b ) ) . ∗/
qdot ( a , b ) := block ( [dummy, expr , s p l i t i , s p l i t j , par t sw i tch ] ,

par t sw i tch : true ,

expr : expand ( atensimp ( a . b ) ) ,

i f ( expr = 0) then

return (0 ) ,

s p l i t i : p a r t i t i o n ( expand ( atensimp ( expr ) ) + dummy, v [ 1 ] ) ,

i f ( part ( s p l i t i , 1) = dummy) then

return (0 ) ,

s p l i t j : p a r t i t i o n ( part ( s p l i t i , 1) + dummy, v [ 2 ] ) ,

−(part ( s p l i t j , 1 ) − 2 ∗ dummy)

) ;

B.2 The Square Four-Bar Mechanism

/∗ Declare the paramaters as s c a l a r s . ∗/

de c l a r e ( [ p s i a , ps i b , theta , thetadash , alpha ] , s c a l a r ) ;

/∗ Now ca l c u l a t e the t h e t a and the tadash ang l e s . ∗/

theta : acos ( cos ( atan ( tan ( alpha )/ sq r t ( 2 ) ) ) / sq r t ( 2 ) ) ;

thetadash : acos(−cos ( atan (1/( sq r t ( 2 ) . tan ( alpha ) ) ) ) / sq r t ( 2 ) ) ;

/∗ Now the hinge vec t o r s and ro t a t i on s . Remember to uses . not ∗ ∗/

v b : s i n ( thetadash ) . i + cos ( thetadash ) . k ;

r a : cos ( p s i a /4) + s i n ( p s i a /4) . s i n ( theta ) . j + s i n ( p s i a /4) . cos ( theta ) . k ;

/∗ Ca lcu la t e the answer . ∗/

v b ro ta t ed : atensimp ( r a . v b . qconj ( r a ) ) ;

j r o t a t e d : atensimp ( r a . j . qconj ( r a ) ) ;

/∗ Get the mirror p lane normal and the ’ hinge normal ’ . ∗/

mirror normal : atensimp ( qc ro s s ( i , v b ro ta t ed ) ) ;

h inge normal : atensimp ( qc ro s s ( j r o t a t ed , v b ro ta t ed ) ) ;

answer :((% pi /2) − acos ( qdot ( mirror normal , h inge normal

/ sq r t ( qdot ( hinge normal , h inge normal )

. qdot ( mirror normal , mirror normal ) ) ) ) . 2 ;

answer :− rats imp ( answer ) ;
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pr in t ( ”Done” ) ;

B.3 The Square Six-Bar Mechanism

/∗ Declare the paramaters as s c a l a r s . ∗/

de c l a r e ( [ ps i b , theta , alpha ] , s c a l a r ) ;

/∗ Now ca l c u l a t e the t h e t a ang le . ∗/

theta : acos ( cos ( atan ( tan ( alpha )/ sq r t ( 2 ) ) ) / sq r t ( 2 ) ) ;

/∗ Now the hinge vec t o r s and ro t a t i on s . Remember to use . not ∗ ∗/

v a : k ;

r b : cos ( p s i b /2) + s i n ( p s i b /2) . s i n ( theta ) . i + s i n ( p s i b /2) . cos ( theta ) . j ;

/∗ Ca lcu la t e the ro ta t ed hinge . ∗/

v a ro t a t ed : atensimp ( r b . v a . qconj ( r b ) ) ;

/∗ Cross i t wi th j to ge t the p lane normal . ∗/

sym plane normal : q c ro s s ( v a ro ta ted , j ) ;

m id h inge vec to r : q c ro s s ( v a ro ta ted , sym plane normal ) ;

/∗ Normalise i t . ∗/

mid h inge vec to r : mid h inge vec to r / sq r t ( qdot ( mid h inge vector , mid h inge vec to r ) ) ;

/∗ Now f ind the ab edge a f t e r r o t a t i on . ∗/

ab edge ro ta t ed : atensimp ( r b .(− j ) . qconj ( r b ) ) ;

/∗ Dot them , and inve r s e cos , ∗ 2 g i v e s p s i a ! ∗/

answer : acos ( qdot ( ab edge rotated , mid h inge vec to r ) ) . 2 ;

answer : rats imp ( answer ) ;

p r i n t ( ”Done” ) ;
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