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Abstract— The paper presents a set of one-degree-of-
freedom overconstrained linkages, which can be folded into
a bundle and deployed into a polygon on a plane. The pro-
posed mechanisms are movable Bricard octahedra of Type
III, characterized by the existence of two configurations
where all joints are coplanar. The possible geometries of
doubly-collapsible Bricard linkages are parameterized and
their kinematics is analyzed. A method is proposed to con-
struct a bundle-compacting mechanism of this type, neces-
sary and sufficient conditions are derived for the deployed-
configuration polygon to be a square. Case studies and sim-
ulations validate the analysis and design.

Keywords: type III Bricard linkage, bundle folding, deployable
mechanism, overconstrained linkages

I. Introduction

A deployable mechanism (DM) is capable of configura-
tion change which dramatically alters its shape and size.
DMs have many potential applications, including for the
rapid construction of structures both in space, e.g., anten-
nas and telescopes [1–3], and on earth, in temporary and
emergency architecture. A DM which is able to fold into a
bundle is of particular interest: minimal size facilitates stor-
age and transport. The most common DMs are composed
of scissor-linkage elements, allowing, with good design, the
mechanism to be folded into a bundle and deployed into d-
ifferent shapes [4, 5].

Recently, spatial overconstrained mechanisms have at-
tracted the interest of designers of DMs. Pellegrino et al.
studied a bundle-compacting Bennett linkage [6]. Simi-
lar research has also been done on the Myard linkage [7],
and the Bricard linkages of types I (line-symmetric) and II
(plane-symmetric) [6, 8–10]. The deployed shapes of the
Bennett, and the Type I and II Bricard linkages, are a rhom-
bus, a hexagon, and a rectangle, respectively.

Since it was proposed, the Type III Bricard linkage has
attracted relatively less attention from researchers [11–14].
It has two collapsed configurations, i.e., all the six revolute
joint axes (and the faces of the octahedron they define) col-
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lapse into a plane in two distinct ways. In this study, we
discuss its parametrization and propose a method for the
construction of a bundle-folding Type III Bricard linkage.
In its other flat configuration, the mechanism deploys as a
quadrangle or a hexagon.

The paper is organized as follows. In the following
section, the type III Bricard linkage is reviewed and pa-
rameterized. Then, a geometric construction is described,
demonstrating the existence of bundle-folding linkages of
this type. Next, for a Bricard bundle with fixed length, the
geometric conditions of forming the maximum deployed
area are derived. Case studies have been performed on both
forward and inverse design, and the obtained mechanisms
have been simulated.

II. The Type III Bricard Linkage

Herein we analyze the type III Bricard linkages, which
have two collapsible configurations. Due to the special geo-
metric conditions each such mechanism must satisfy, it can
be described by only five parameters.

A. Geometric construction

The Bricard linkage ABCA′B′C′ in Fig. 1, is of type III
with two collapsed states. The linkage can be constructed
as follows: draw two concentric circles of arbitrary radii;
choose two arbitrary points A and A′ outside of the larger
circle; construct the tangents from A and A′ to the circles
and determine their intersections B, B′, C and C′. The lines
BC, B′C′, B′C and BC′ will be tangent to a third concentric
circle with radius rt . Then, the six triangles ABC′, ABC,
AB′C, A′B′C, A′B′C′, A′BC′ taken in this cyclic order and
hinged at their common edges, constitute a deformable six-
plate linkage with 1 dof [13].
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Fig. 1. Construction of a Bricard linkage

The six triangles in fact define a deformable octahedron:
the two remaining (virtual) faces are the triangles ACB′ and
A′C′B, whose shape is constant during the movement. How-
ever, if they are physically part of the linkage, link interfer-
ence is unavoidable.

B. Parametrization of the Bricard linkage

The construction in Fig. 1, can be described by the radii
of the two circles and the positions of points A and A′. We
denote the radii of the larger and smaller concentric circles
by R and r, respectively. The lengths of OA and OA′ are
lA and l′A. The fifth parameter is the angle between OA
and OA′, denoted by θ . A linkage geometry of this type
is described completely by the five scalars, R, r, lA, l′A, and
θ . One of the parameters controls the scale of the Bricard
linkage; the other four describe the collapsed configuration,
which determines the shape and deformation of the octahe-
dron.

C. The two coplanar configurations

The two collapsible configurations of an example Bricard
linkage are shown in Fig. 2. The lighter color indicates the
reverse side of the darker triangle.
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Fig. 2. Two collapsed configurations of the type III Bricard

III. Bundle-compacting Bricard Linkages

The geometric construction, described above, determines
the relationship among the rotating axes which are the most
important elements of the mechanism. The six triangles
can be seen as connecting bars (physical links) with specif-
ic profiles. Kinetics of the linkage will not be affected by
altering the geometric outline of the links, but the physical
shape of the mechanism will change.

Consider the linkage made with the six triangles men-
tioned in the first paragraph of last section. The edges AB,
BC, AC′, A′B′, B′C′, A′C are the rotation axes of the mech-
anism. In Fig. 2(a), draw a line not parallel to any of the
six coplanar axes. Then, take the segment of this line con-
necting the intersection points on any two adjacent R-axes
as the physical rigid link. Thus, in this shown configura-
tion, the linkage will be compacted into a line (segment).
Once the linkage moves to the other collapsible configura-
tion, as shown in Fig. 2(b), a planar polygon will be formed
by those connecting segments.

Practically, the rigid links have finite thickness and so in
the first collapsed configuration, the physical shape of the
mechanism will be a bundle; in the second, the top view of
the mechanism forms a polygon.

Generally, it is desirable to minimize the distance be-
tween the extreme two intersection points on the bundle
line, and to maximize the area of the polygon defined by the
link segments in the other coplanar configuration. For this
reason, one of the two collapsed states is preferred as the
bundled configuration, and the other as the deployed one.
As can be seen in Fig. 2, the hinge-axis segments (the com-
mon triangle edges) are more compactly located in Fig. 2(a)
than in Fig. 2(b). Therefore, the length of the segment on
the bundle line will be shorter in Fig 2(a).

Different choices of the intersecting line in Fig. 2(a), re-
sult in different deployed shapes and sizes in the second
coplanar configuration. Figure 3 gives three examples. The
Bricard linkage in Fig. 3 satisfies AB = BC = A′B′ = B′C′.

The bundle line intersects either a hinge-axis segment or
its extension. In Fig. 3(a), the straight line crosses AB, AC′,
A′B′, A′C and the extensions of BC and B′C′, in addition,
it is parallel with BB′. The formed geometric shape in the
other coplanar configuration is a hexagon which has three
pairs of parallel sides.

The straight line in Fig. 3(b) is BB′, intersecting two ax-
es (AB and BC) at B, and two others (A′B′ and B′C′) at
B′. There are only four intersection points of the line with
the six axes.Therefore, in the coplanar configuration on the
right, the formed shape is a quadrangle.

In Fig. 3(c), the straight line crosses BC, AC′, A′C, A′B′,
and the continuations of AB and B′C′. The formed shape
is a hexagon, however, the shape is more general than in
Fig. 3(a).

Among all the possible lines, BB′ is the shortest segment
that can cross all six rotation axes. A simulated model of
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(a)
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Fig. 3. Bundle-folding linkages form different deployed polygons

this case is shown below.

(a) (b) (c)

Fig. 4. Simulation of a bundle-folding Bricard square

In Fig. 4, the bundle line forms a quadrangle in the oth-
er collapsible configuration. In the simulated model, as
the links must have some physical shape and non-zero-area
cross-sections, the outline of the mechanism varies a little.
In the following analysis, we will only focus on the shape

formed by the line, since the link-shape can vary depending
on the detailed practical realization.

IV. The maximum deployed area of the folded bundle

When the intersecting line is along BB′, the deployed
area will be a quadrangle. In this section, the conditions of
obtaining a linkage that yields a maximum deployed area
are analyzed. Inverse analysis is also performed, obtain-
ing all the parameter sets yielding a bundle-folding Bricard
mechanism with a given bundle length.

It is well-known that among the quadrangles with the
same perimeter, the square has the maximum area. There-
fore, we seek the conditions under which the Bricard link-
age will deploy into a square.

A. Deployable square

A general type III Bricard linkage is shown in Fig. 5. The
bundle line is BB′. The common point of BB′ and A′C is D,
while BB′ and AC′ intersect at D′. The six rotation axes are
AB, BC, A′C, A′B′, B′C′, and AC′. As the linkage moves, the
distance between B and B′ (which are not on the same face
of the octahedron) changes, while points D and D′ stay on
the rigid intervals A′C and AC′, respectively. The deployed
quadrangle has its vertices at the positions of B, D, B′ and
D′ in the alternative collapsed configuration.

Fig. 5. Construction of Bricard linkage

Figure 6 illustrates a general bundle-folding Bricard
quadrangle. The two collapsed configurations are displayed
in Fig. 6: ABCA′B′C′ and ABC∗A′∗B

′
∗C
′, respectively. Trian-

gle ABC′ is assumed to be the fixed base link. An asterisk
denotes the position of a moving point in the second copla-
nar configuration. The octahedron vertices B′ and C rotate
about AC′ and AB, respectively. Therefore, B′ and B′∗ are
symmetric with respect to AC′, i.e., |B′D′| = |B′∗D′|. Sim-
ilarly, |BD| = |BD∗|. The distance between points on the
same rigid link does not change. Hence, |B′D|= |B′∗D∗|, as
a segment on the rigid panel A′B′C. So, with known length
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of BB′ and location of D and D′, the lengths of the four
sides of the quadrangle BD′B′∗D∗ can be obtained.

Fig. 6. The formed quadrangle

A.1 Geometric conditions

The Bricard linkage in Fig. 6 must satisfy the following
three geometric conditions for the quadrangle BD′B′∗D∗ to
be a square.

(i) AC′, A′C and BB′ have a common point, D = D′

(ii) This intersection is at the midpoint of BB′

(iii) ∠C′DB′ = 45◦

(i) D = D′⇔ |BD′|= |BD∗| & |B′∗D′|= |B′∗D∗|

Proof
Sufficiency. Because B′D belongs to the rigid body A′B′C,
|B′D| = |B′∗D∗|. Similarly |B′D′| = |B′∗D′|, since B′D′ s-
tays on another rigid panel, AB′C′. If D = D′, then |B′D|=
|B′D′|. Therefore, |B′∗D∗|= |B′∗D′|, i.e., the two sides of the
quadrangle at B′∗ are equal. As |BD∗|= |BD|, when D = D′,
|BD∗|= |BD′|, i.e., the quadrangle has a kite shape.
Necessity. Obvious: |BD′| = |BD∗| is equivalent to |BD| =
|BD′|, so D coincidences with D′. 2

Once condition (i) is met, there exists one symmetry axis,
BB′1, of the deployed quadrangle. Moreover, OD ⊥ BB′,
Fig. 7.

(ii) D = D′ is the midpoint of BB′⇔ BD′B′∗D∗ is a rhombus

Proof
Sufficiency. When, in addition to Condition (i), D = D′ is
the midpoint of BB′, |BD| = |B′D|, and so |BD| = |B′∗D|.
The four sides of the quadrangle are equal and BD′B′∗D∗ is
a rhombus.
Necessity. If BD′B′∗D∗ is a rhombus, then its four sides
are equal, and so are |BD| and |B′D|. Therefore, D and D′

coincide and divide BB′ in two equal segments. 2

By adding constraint (ii), a second mirror-symmetry axis
is defined, Fig. 8.

Fig. 7. AC′, A′C and BB′ intersect at a same point

Fig. 8. The formed rhombus

(iii) ∠C′DB′ = 45◦⇔ BD′B′∗D∗ is a square

Proof
Sufficiency. Since the rigid panel AB′C′ rotates around ax-
is AC′ in Fig. 8, ∠B′DB′∗ = 2∠C′DB′ in the other copla-
nar configuration, and ∠BDB′∗ = 180◦ −∠B′DB′∗. When
∠C′DB′ = 45◦, ∠B′DB′∗ is a right angle. BD′B′∗D∗ is a
square as it is a rhombus that includes a right angle (see
Fig. 9).
Necessity. Obvious. 2

A.2 Dependence of the geometric parameters

With the above three geometric conditions satisfied, only
two of the five Bricard-geometry parameters are indepen-
dent. In the following, the relationships among the five ge-
ometric parameters of the Bricard linkage are derived.

First, conditions (i) and (ii) are assumed. We show that
then there are three independent parameters determining the
mechanism geometry.

When D=D′ and |BD|= |DB′|, points B and B′ are sym-
metric with respect to OD, Fig. 8. Due to OD ⊥ BB′, we
have |OB|=

√
|OD|2 + |BD|2 = |OB′|=

√
|OD|2 + |B′D|2.

It can be concluded, from the construction of the type III
Bricard linkage, that A and A′ are located on the intersec-
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Fig. 9. The formed square

tion of the tangent lines from B and B′, which are also sym-
metric with respect to OD. In Fig. 10, there are two pairs of
points of tangency: P1, P2 and P′1, P′2, on the tangents from
B and B′, respectively.

Fig. 10. D locates in the middle of BB′

The angles ∠P2OB and ∠P′2OB′ are, respectively,

cosβ1 =
R
|OB|

(1)

cosβ2 =
R
|OB′|

(2)

where β1,β2 ∈ [0,180◦]. Because |BD| = |B′D|, we have
β1 = β2.

If ∠P1OP′1 = φ , then ∠P2OP′1 = 2β1 +φ and ∠P′2OP1 =
2β2 +φ , which gives

∠P2OA = ∠P′2OA′ =
2β1 +φ

2
= δ (3)

Since R = lA cosδ = l′A cosδ ,

lA = l′A (4)

In the following, we derive R as a function of lA, θ and r.

From lA = l′A we have ∠OAB′ = ∠OA′B′. So,

κ1 +κ2 = κ1 +∠OAB′+κ2−∠OA′B′ = ∠OAA′+∠OA′A.
(5)

where κ1 = ∠B′AA′ and κ2 = ∠B′A′A. Therefore, κ = π−
κ1−κ2 = θ , which means that points O, A, A′, B′ are on the
same circle, and so is B.

Fig. 11. Relationship among lA, θ and r

Because A and A′ are symmetric with respect to the line
OD, the latter must pass through the center, O′ of this circle.
For its diameter, we have

d =
lA

cos
θ

2

(6)

From the circle with radius r,

|OD|= r

sin(
θ

2
+ arcsin

r
lA
)

(7)

we have

|O′D|= 1
2

d−|OD| (8)

and

∠DO′B= arccos
|O′D|

1
2

d
= arccos(1−

2r cos
θ

2

sin
θ

2

√
l2
A− r2 + cos

θ

2
r
)

(9)
Because all the points are located on a circle, the central an-
gle ∠BO′B′ is 2 times of the angle of circumference ∠OAB′.
So

τ = ∠OAB′ =
1
2

arccos(1−
2r cos

θ

2

sin
θ

2

√
l2
A− r2 + cos

θ

2
r
)

(10)
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Since the circle with radius R is tangent to AB′,

R = lA sinτ (11)

In the second step, all the three conditions from the previ-
ous subsection constrain the mechanism. So, B′∗ will locate
on OD and θ becomes a function of lA and r,

θ = 90◦−2arcsin
r
lA

(12)

B. Bricard linkages with the same bundle length

In the following, we obtain a Bricard linkage that can be
deployed into a square for a given length of the bundle.

From the above calculations, the deployed square can be
determined by two parameters, e.g., r and lA in (12). There
are infinitely many linkages that can be deployed into a
square and fold into a bundle with same length. By varying
the above equations, the relationship among r, lA and BB′ is
obtained,

4
√

2rlA

cos(45◦− arcsin
r
lA
)
−8r2 = |BB′|2 (13)

Therefore, with given BB′ and r, lA can be calculated with
(13). The other parameters can be obtained from (12), (11),
and (4).

V. Case studies

Two case studies are reported in this section. The first
outlines a procedure to obtain a Bricard linkage deployable
into a square shape. The second describes several different
Bricard linkages with the same bundle length but different
geometric parameters.

A. Case I

In this case study, we start from a general Bricard link-
age, then constrain the deployed shape to a square by
adding the constraints step by step.

We take the Bricard linkage in Fig. 5 as the model. The
5 parameters of the initial mechanism are R = 35, r = 20,
lA = 70, l′A = 50, θ = 55◦. The bundle line is BB′ as usual,
the deployed shape is in Fig. 6.

From (4) and (11), adding the first two constraints, we
have

lA = l′A = 50 (14)
R = 33.77 (15)

The bundle and the corresponding deployed rhombus is
shown in Fig. 12. When θ = 90◦− 2arctan

r
lA

= 42.84◦,

the obtained shape is a square as described in Fig. 13.

(a) (b)

Fig. 12. A Bricard linkage unfolding into a rhombus

(a) (b)

Fig. 13. A Bricard linkage unfolding into a square

B. Case II

With the same given length |BB′|= 200 and different val-
ues r, several Bricard linkages are obtained, each of them
deployable into a square.

When r = 110, from (13), the other parameters are cal-
culated as lA = l′A = 213.35, θ = 27.93◦, R = 179.47. The
construction of the Bricard linkage and the formed square
is shown in Fig. 14.

Fig. 14. Construction of the Bricard linkage with BB′ = 200 and r = 110

Next, we use r = 70.71, lA = 184.78, θ = 45◦, and R =
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130.66. This is a special case, since D and D∗ are midpoints
of AC′ and A′∗C∗ respectively, Fig. 15.

Fig. 15. Construction of the Bricard linkage with BB′ = 200 and r = 70.71

When r = 45, lA = 188.82, θ = 62.42, and R = 97.87,
the two collapsed configurations are shown in Fig. 16.

Fig. 16. Construction of the Bricard linkage with BB′ = 200 and r = 45

It can be seen that, under the condition that the bundle
length is constant, the smaller the value of r, the nearer

point D∗ is to C∗. When r =

√
2

4
|BB′|, D is in the midpoint

of A′C and AC′.
A 3D model of the Bricard linkage in Fig. 14 has been

built where the cross section of each bar is nearly a rect-
angle, but slightly modified to avoid collisions during the
motion. Simulation of the movement of the bundle-folding
Bricard linkage is performed as shown in Fig. 17. The
formed square is marked with a dotted line in Fig. 17(c).

(a) (b) (c)

Fig. 17. Simulation of an example Bricard linkage

VI. Conclusion

Using the capability of the type III Bricard linkage to
be coplanar in two configurations, a family of mechanism-
s has been proposed, each of which can be folded into a
bundle and deployed into a planar polygon. The functional
relationships among the bundle length, the deployed shape,
and the parameters of the Bricard linkage have been ana-
lyzed, and the geometric conditions for the construction of
a deployable square have been derived.

Case studies have been performed, presenting the proce-
dure of obtaining a deployed square, with several choices
of the Bricard linkage with the same bundle length and de-
ployed shape.

Although the paper focuses on the construction of de-
ployable quadrangles, with a different choice of the bundle
line the mechanism can be also deployed as a hexagon.
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