
SYMMETRIC PRISMATIC TENSEGRITY STRUCTURES

J.Y ZHANG1,2, S.D. GUEST1, M. OHSAKI2

1Dept. of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United
Kingdom
2Dept. of Architecture and Architectural Engineering, Kyoto University, Kyoto-Daigaku Katsura,
Nishikyo, Kyoto 615-8540, Japan
E-mail: is.zhang@archi.kyoto-u.ac.jp sdg@eng.cam.ac.uk ohsaki@archi.kyoto-u.ac.jp

ABSTRACT

This paper presents a simple and efficient method to determine the self-equilibrated configurations
of prismatic tensegrity structures with dihedral symmetry. It is demonstrated that stability of
prismatic tensegrity structures is not only determined by the connectivity manner of the members,
but also sensitive to the height/radius ratio and the stiffnss/prestress ratio. A catalogue of sym-
metric prismatic tensegrity structures with relatively small number of members is presented based
on the stability investigations.

1. INTRODUCTION

In this paper, we describe a study into the configuration and stability of prismatic tensegrity
structures with dihedral symmetry. The simplest example of this class of structures is shown in
Figure. 1. This class of structures was studied by Connelly and Terrell [1]: they showed that the
example shown in Figure. 1, and other prismatic tensegrity structures where the horizontal cables
are connected to adjacent nodes, are guaranteed to be stable, regardless of the levels of prestress
and material properties. These structures are called super stable. However, the stability of other
structures in this class was not addressed, and is the subject of this paper.

We show that, in general, the stability of prismatic tensegrity structures depends not only on the
connectivity of the members, but also on their geometry (height/radius ratio), and also on the
level of prestress and the stiffness of struts and cables.

2. SYMMETRY AND CONFIGURATION

We are considering structures that have dihedral symmetry, denoted Dn: there is a single major n-
fold rotation axis, which we assume is the vertical, z-axis, and n 2-fold rotation axes perpendicular
to this. The structures consist of 2n nodes, arranged in two horizontal planes, with n nodes in
each. We number the nodes from 0 to n− 1 in the top plane, and n to 2n− 1 in the bottom plane.

Each node of the structure is connected by two horizontal cables within its own horizontal plane,
and is connected by one ‘vertical’ cable and one strut to nodes in the other plane. An example
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Fig. 1: The simplest prismatic tensegrity structure. The thick and thin lines denote, respectively,
cables that can only carry tension, and struts that carry compression. There are two horizontal
planes, which have here been coloured grey to aid perception. This structure has D3 symmetry,
and is denoted D1,1
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Fig. 2: All nodes connected to node 0, N0, of an example tensegrity structure with D8 symmetry.
The horizontal cables are connected to nodes 2 and n−2 = 6, the strut is connected to node n = 8,
and the ‘vertical’ cable is connected to node n + 1 = 9. This structure is denoted D2,1
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showing the cables and struts connected to node 0, N0, is shown in Figure. 2. Node N0 is connected
by a strut to node Nn, by horizontal cables to nodes Nh and Nn−h (we assume that h ≤ n/2) and
by a vertical cable to node Nn+v, where h and v are parameters that define the structure. We
denote the structure defined by n, h and v as Dh,v

n .

Each node is transformed into exactly one other node by one of the symmetry operations in
the group (the nodes form a regular orbit). Each symmetry operation can be represented by a
transformation matrix Ri, where the operation transforms node N0 to node Ni. Let the coordinates
of nodes N0 and Ni be denoted by x0 and xi (∈ <3) in three-dimensional space, respectively. They
are related by Ri ∈ <3×3 as

xi = Rix0 (1)

where i runs from 0 to 2n − 1. The matrices Ri are given in Table 1. In group representation
theory, the mapping from the symmetry operations to these matrices is said to form a reducible
representation for the group [2].

To find a totally symmetric state of self-stress in the structure, we only have to consider equilibrium
of one node — every other node is symmetrically equivalent [3]. We will consider node N0. Let
qh, qs and qv denote the force densities — axial force fi to length li ratio; i.e., qi = fi/li, of the
horizontal cables, strut and vertical cable, respectively.

The two nodes connecting to N0 as horizontal cables must be chosen as a pair; i.e., if Nh is
selected to connect with N0, then symmetry requires that node Nn−h should also be chosen. The
coordinates xh and xn−h can be computed as follows

xh = Rhx0, xn−h = Rn−hx0 (2)

and the axial force vectors fh and fn−h of horizontal cables can be written as

fh = fh(xh − x0)/lh = qh(Rh − I3)x0

fn−h = fh(xn−h − x0)/lh = qh(Rn−h − I3)x0

(3)

Table 1: Transformation matrices of the dihedral group Dn. Note that each matrix has a block-
diagonal form, where the non-zero entries occur in a 2 × 2 block in the top-left and a 1 × 1 block
in the bottom right. The mapping from the operations to these submatrices forms an irreducible
representation of the group [2]. We use the notation Ci = cos(2iπ/n) and Si = sin(2iπ/n).

0 ≤ i ≤ n − 1 n ≤ i ≤ 2n − 1

Ri





Ci −Si 0
Si Ci 0
0 0 1









Ci Si 0
Si −Ci 0
0 0 −1







where I3 denotes the 3-by-3 identity matrix.

Unlike the horizontal cables, there is only one node Nn+j in the lower plane connected to N0 as a
strut or vertical cable — the inverse of Rn+j (0 ≤ j < n) is identical to itself; i.e., R−1

n+j = Rn+j .
The axial force vectors fs and fv of the strut and vertical cable are

fs = qs(Rn+s − I3)x0, fv = qv(Rn+v − I3)x0 (4)

We are interested in the case when the structure is in equilibrium without external loads. Thus,
the node N0 should be in a state of self-equilibrium:

fh + fn−h + 2fs + 2fv = 0 (5)

Substituting from (3), (4) and Table 1 gives

Ax0 = 0 (6)

where

A = 2qh





Ch 0 0
0 Ch 0
0 0 1



 + 2qs





1 0 0
0 1 0
0 0 −1



 + 2qv





Cv Sv 0
Sv Cv 0
0 0 −1



 − 2(qh + qs + qv)





1 0 0
0 1 0
0 0 1



 (7)

Notice that A has a block-diagonal form, where the non-zero entries occur in a 2 × 2 block in the
top-left and a 1 × 1 block in the bottom right

In order for (6) to give a solution for x0 that does not lie either in the xy-plane, or along the z-axis,
then both the submatrices in A must be singular, and this gives the two following conditions

qv = −qs

qh

qv
= ±

√
2 − 2Cv

1 − Ch

(8)

Since both of qh and qv should be positive for the cables, only the positive solution is adopted.

The general solution x0 of (6), the null-space of A, is then given by

x0 =
r

r0





Cv − 1 +
√

2 − 2Cv

Sv

0



 + H/2





0
0
1



 (9)

where r0 is the norm of the first vector representing the coordinates in xy-plane, and r and H are
the radius and height of the structure, which can have arbitrary real values.

By the application of (1), then coordinates of all the nodes Ni of the structure can be determined
by running i from 0 to 2n − 1.

3. DIVISIBILITY CONDITIONS

Depending on the connectivity of members, a prismatic tensegrity structure may be completely
separated into several identical substructures that have no mechanical relation with each other.
For example, the structure D2,2

6 in Figure. 3 can be divided into two identical substructures D1,1
3 .

We will exclude divisible structures from our stability investigation: the disconnected substructures
have nothing to prevent relative motion. The substructures themselves can be considered as
individual structures with lower symmetry.

This section presents the necessary and sufficient conditions for the divisibility of prismatic tense-
grity structures.
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Fig. 3: An example of divisible structure D2,2
6 and its two substructures D1,1

3 .

3.1 Divisibility of Horizontal Cables

Suppose that we randomly select one node as the starting node, and travel to the next along the
horizontal cables. If we repeat this in a consistent direction, eventually, we must come back to
the starting node. The nodes and horizontal cables that have been visited in the trip are said to
belong to the same circuit. If there are more than one circuit in the plane, the horizontal cables
are said to be divisible; otherwise, they are indivisible.

Denote the number of circuits of the horizontal cables in one plane by nc, and the number of nodes
in each circuit by ns. Each time we travel along a cable of one circuit, we pass by h nodes, and
hence by the time we return to the original node, we have passed hns nodes. Suppose that in this
circuit, we have travelled around the plane hs times, and have hence passed by nhs nodes. Thus,

nsh = hsn. (10)

The number of circuits ns in each horizontal plane is given by

nc =
n

ns
=

h

hs
. (11)

The necessary and sufficient condition for the divisibility of horizontal cables in the same plane is
that there is more than one circuit of nodes, nc 6= 1, and hence.

h 6= hs (12)

Valuable information about possible substructures can be found:

• The connectivity of the horizontal cables is hs.

• The number of nodes in each plane is ns.

• There are nc substructures.

Note that (12) is only the divisibility condition for the horizontal cables, but not for the whole
structure. Divisibility of vertical cables should also be taken into consideration.

3.2 Divisibility of Vertical Cables

If the horizontal nodes are divisible, then the nodes in the circuits of horizontal cables containing
N0 and Nn are

Circuit 1: N0, Nh, N2h, . . . , N(ns−1)h

Circuit 2: Nn, Nn+h, . . . , Nn+(ns−1)h

(13)



Circuit 1 and Circuit 2 are connected by struts. If they are also connected by cables, then the
substructure constructed from these nodes can be completely separated from the original structure.
Thus the structure will be divisible if the following holds, where vs is an integer:

v = vsh (14)

In summary, (12) and (14) are the necessary and sufficient conditions for a divisible structure. The

original structure Dh,v
n can be divided into nc identical substructures Dhs,vs

ns .

4. STABILITY

In this section, the critical factors for the stability of prismatic tensegrity structures are investi-
gated: height/radius ratio, connectivity, and stiffness/prestress ratio. We will use the symmetry-
adapted coordinate systems to simplify our calculations, and present the results [4, 5].

4.1 Prestress Stability

If we assume that the axial stiffness of struts and cables is infinite, then to first order, the only way
that the structure can deform is along the path of infinitesimal mechanisms. Then we can define
prestress stability as follows:

If the quadratic form of the geometrical stiffness matrix with respect to the mechanisms is positive
definite, then the structure is said to be prestress stable. [6]

This criterion is very convenient for the initial investigation of the stability of our structures,
because the selection of materials does not need to be considered.

We will consider the calculation in a symmetry-adapted form, where we can separately consider the
properties of the structure in different symmetry subspaces. Each symmetry subspace corresponds
to one of the irreducible representations of the group. For the dihedral symmetry group Dn,
the irreducible representations are, for n even, A1, A2, B1, B2, E1, · · · , En/2−1, and for n odd,
A1, A2, E1, · · · , E(n−1)/2.

Let µ denote an irreducible representation of the symmetry group of the structure. The blocks of
the symmetry-adapted geometrical stiffness matrix K̃G and equilibrium matrix D̃ corresponding to
µ are denoted by K̃µ

G and D̃µ, respectively. The symmetry-adapted mechanisms lying in the null-

space of the transpose of D̃µ are written as columns of M̃µ. Then, the block Ãµ corresponding
to the representation µ of the symmetry-adapted quadratic form Ã of the geometrical stiffness
matrix with respect to the mechanisms is

Ãµ = (M̃µ)>K̃µ
GM̃µ (15)

The structure is prestress stable if and only if Ãµ are all positive definite for all representations µ
except for A2 and E1, which corresponds to the rigid-body motions; and the positive definiteness
of Ãµ can be easily verified because it is a matrix with dimensions of only one or two.

4.2 Critical Factors

Here, we show that the prestress stability of a prismatic tensegrity structure is not only influenced
by the connectivity of horizontal cables but also that of the vertical cables, and furthermore, is
sensitive to the height/radius ratio.

4.2.1 Height/Radius Ratio

Consider the structure D2,3
8 as an example. The structure is indivisible, and the relationship

between the minimum eigenvalues of Ãµ and the height/radius ratio is plotted in Figure. 4.

The minimum eigenvalues of the ÃA2 and ÃE1 blocks are always equal to zero because they
corresponds to the rigid-body motions. ÃA1 and ÃE2 are always positive definite, while the
positive definiteness of ÃE3 varies depending on the height/radius ratio.
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Fig. 4: The influence of the height/radius ratio on the prestress stability of the structure D2,3
8 .

The structure is prestress stable when the ratio is in the range [0.4, 3.1]
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Fig. 5: The influence of the height/radius ratio on the prestress stability of the structure D2,1
8 .

The structure is never prestress stable.

We can see that the structure is prestress stable only when the height/radius ratio falls into the
region [0.4, 3.1], which is shown as a shaded area in the figure.

4.2.2 Connectivity

A structure is super stable only if h = 1 [1]. Thus it is clear that stability depends on the
connectivity of horizontal cables. It has been illustrated above that in some special cases with the
right height/radius ratio, the structure can still be prestress stable, even though it is not super
stable. However, this is also dependent upon the connectivity of vertical cables.

For example, consider the structure D2,1
8 in Figure. 5, with the same connectivity of horizontal

cables as D2,3
8 , but different connectivity of vertical cables. Unlike the structure D2,3

8 , the structure
D2,1

8 can never be prestress stable because the minimum eigenvalue of ÃE3 is always negative.

4.2.3 Materials and Self-stresses

This section will show the effect on the stability of the structures of having non-infinite stiffness
for the cables and struts. We will make the simplification that all of the struts and cables have
the same axial stiffness. The key parameter is then the ratio of the axial stiffness to the prestress
in the structure.
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Fig. 6: The influence of the height/radius ratio and the stiffness/prestress ratio k on the stability
of the structure D3,2
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Consider that the cables and struts have axial stiffness AE/l, and that the vertical cables carry
a force density, due to the prestress, of qv. We will consider the stiffness of an example structure
for different values of k = AE/lqv, where k is dimensionless. If the structure is linear-elastic, the
strain due to a particular prestress will be 1/k.

Figure 6 shows the smallest eigenvalues of the tangent stiffness matrix for the structure D3,2
7 .

Results are plotted for k = 1, 10, 100, 1000, and for the infinite stiffness case, where effectively
k → ∞. As k reduces, the structure becomes less stable, and eventually loses stability altogether.

5. CATALOGUE

Based on the methods described in this paper, we present in Table 2 a complete catalogue of
prismatic tensegrity structures with dihedral symmetry for n ≤ 10.

6. DISCUSSION AND CONCLUSION

A simple method for determining the self-equilibrated configuration of prismatic tensegrity struc-
tures with dihedral symmetry has been presented.

The conditions for the divisibility of prismatic tensegrity structures have been presented, based on
the connectivity of horizontal and vertical cables. Divisible structures can be physically separated
into several identical substructures.

Stability of prismatic tensegrity structures is demonstrated to be related to the connectivity of the
horizontal and vertical cables, and is also sensitive to the height/radius ratio of the structure. It
is also shown that stability of a tensegrity structure that is not super stable is also influenced by
the selection of materials and the level of prestress.

A complete catalogue of the prismatic tensegrity structures with relative small number of members
has been given.

The methods described in this paper have been implemented interactively, and can be accessed
with the JAVA program online:
http://tensegrity.AIStructure.com/prismatic/
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Table 2: The stability of prismatic tensegrity structures Dh,v
n . ’s’ denotes super stable, ’u’ denotes

unstable, and ’p’ indicates that the structure is not super stable but is always prestress stable with
arbitrary height/radius ratio. If the structure can be divided, its substructures are given; and if
the structure is prestress stable only in a specific region of height/radius ratio from h1 to h2, then
this region is presented by [h1, h2].

h
n = 3 1
v 1 s

h
n = 4 1 2
v 1 s u

2 s 2D1,1
2

h
n = 5 1 2
v 1 s u

2 s u

h
n = 6 1 2 3

1 s u u

v 2 s 2D1,1
3 u

3 s p 3D1,1
2

h
n = 7 1 2 3

1 s u u
v 2 s u [0.75,1.05]

3 s u u

h
n = 8 1 2 3 4

1 s u u u

v 2 s 2D1,1
4 u 2D2,1

4

3 s [0.40,3.10] u u

4 s 2D1,2
4 [0.35,2.35] 4D1,1

2

h
n = 9 1 2 3 4

1 s u u u
v 2 s u u u

3 s u 3D1,1
3 u

4 s u [0.20,1.60] u

h
n = 10 1 2 3 4

1 s u u u u

2 s 2D1,1
5 u 2D2,1

5 u
v 3 s [0.70,1.35] u [0.75,1.25] u

4 s 2D1,2
5 u 2D2,2

5 u

5 s p p p 5D1,1
2
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