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Miura-ori is well-known for its capability of flatly
folding a sheet of paper through a tessellated
crease pattern made of repeating parallelograms.
Many potential applications have been based on the
Miura-ori and its primary variations. Here we are
considering how to generalize the Miura-ori: what is
the collection of rigid-foldable creased papers with
a similar quadrilateral crease pattern as the Miura-
ori? This paper reports some progress. We find some
new variations of Miura-ori with less symmetry than
the known rigid-foldable quadrilateral meshes. They
are not necessarily developable or flat-foldable, and
still only have single degree of freedom in their rigid
folding motion. This article presents a classification
of the new variations we discovered and explains the
methods in detail.

1. Introduction
The most broadly studied rigid origami tessellation is
the Miura-ori [1] introduced by Prof. Kyoto Miura as
an efficient packing method for large membranes in
space, as shown in figure 1. It has a periodical crease
pattern, where each unit cell consists of a degree-4 vertex
connecting four parallelograms. Miura-ori can be folded
where all deformation is concentrated on the rotation of
perfectly rigid panels around creases. This property is
called the rigid-foldability. The rigid folding motion starts
from the planar state to the flat-folded state where,
globally, there is an in-plane shrinkage deformation. Up
to now there has been many successful applications
inspired by the rigid-foldability of Miura-ori and its
primary variations, such as a lithium-ion battery that
can also be largely folded, bended and twisted [2];
a flat-foldable corrugated vault used as transformable
architecture that connects two existing buildings [3]; a
compliant mechanism used for energy absorption and
impact force distribution [4], etc. Encouraged by these
applications, we are motivated to explore more rigid-
foldable variations of the Miura-ori with similar crease
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Figure 1. We show the crease pattern, an intermediate rigidly folded state, and the flat-folded state of a Miura-ori. Near

each vertex, there are three mountain folds (coloured red or solid lines) and one valley fold (coloured blue or dashed

lines), or vice versa. The rigid folding motion of a Miura-ori is an in-plane shrinkage deformation, which is plotted by an

open source software called Freeform Origami [5].

patterns consisting of quadrilaterals. Hence here we raise a question: What is the collection of
rigid-foldable creased papers with a similar quadrilateral crease pattern as the Miura-ori? This
article makes some progress on classifying such rigid-foldable quadrilateral creased papers by
introducing new tools on the study of rigid-foldability. We believe that this theoretical progress
will cast light on more engineering applications where transformable piecewise-rigid structures
are needed.

There are a number of previous results concerning rigid-foldable quadrilateral creased papers.
The majority of them focus on a developable (can be folded planar) and flat-foldable (can be
folded flat) quadrilateral creased paper, which is an important subset of the quadrilateral creased
papers considered here. Tachi [5] first described the sufficient and necessary condition for a
developable and flat-foldable quadrilateral creased paper to be rigid-foldable, and some other
papers followed with further examples and design methods [6,7]. If we go out of this subset, [3]
introduced a specific type of non-developable and flat-foldable quadrilateral creased paper, while
[8–10] introduced some developable and non-flat-foldable quadrilateral creased papers. Here our
target is to provide a full description of rigid-foldable quadrilateral creased papers, without any
restriction on the developability or flat-foldability.

In the first paper of this series [11], we presented more details for all necessary definitions used
in the current paper, and we mentioned an interesting topic called generic rigid-foldability: given a
crease patternC, whether (almost) all possible creased papers with crease pattern isomorphic toC
are rigid-foldable. The crease pattern of the Miura-ori turns out to be generically rigid, since there
exists a first-order rigid quadrilateral creased paper. What we have done in this paper is exactly
to find the non-generic quadrilateral creased papers that are rigid-foldable, which is challenging
due to the complicated compatibility conditions over the whole creased paper.

To find variations of Miura-ori without strong symmetry, our method is to apply the result
in [12], where a nearly complete classification of rigid-foldable 3× 3 quadrilateral mesh (or called
Kokotsakis quadrilateral) is presented, and the constraints on sector angles are given symbolically.
Since a large quadrilateral mesh is rigid-foldable if and only if its restriction on each 3× 3 mesh
is rigid-foldable, by considering proper stitching of these Kokotsakis quadrilaterals it would be
possible to find all analytical variations of a large rigid-foldable quadrilateral mesh. Although our
generalization is still incomplete, this stitching method is shown effective and has enabled new
analytical design of rigid-foldable quadrilateral meshes. Further, this stitching method has the
potential of being applied to other crease patterns or origami structures with each inner vertex
degree-4 but each inner panel not quadrilateral, such as the Kagome pattern, origami stacked
metamaterials consisting of several layers [13], origami ring structures [14], etc.
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(a) (b) (c)

Figure 2. (a) shows a m× n (m,n are positive integers) planar quadrilateral mesh, and our object of study is a creased

paper with a crease pattern isomorphic to (a). A quadrilateral creased paper is not necessarily developable or flat-foldable,

and in (b) a non-developable and non-flat-foldable quadrilateral creased paper is shown. (c) is an example of a “ring”

structure mentioned in Remark 2, plotted by Freeform Origami [5]. The mountain and valley creases are coloured red and

blue. Such system will not be discussed in this article.

From the next section we will start to discuss the collection of rigid-foldable quadrilateral
creased papers. In order to present further results some preliminaries are needed.

2. Preliminaries

(a) Quadrilateral and degree-4 single creased paper
We first present some definitions related to a quadrilateral creased paper.

Definition 1. A graph is isomorphic to another graph if they have the same number of vertices
which are also connected in the same way. The detailed definition of a creased paper is provided
in [11], roughly speaking, it is a polygonal mesh in R3 that allows contact of different parts but
does not allow self-intersection. A quadrilateral creased paper is a creased paper with a crease
pattern isomorphic to the m× n (m,n are positive integers) planar quadrilateral mesh shown
in figure 2(a). A vertex or crease is called inner if it is not on the boundary of a creased paper,
otherwise outer. A panel (face of a creased paper) is called inner if none of its vertices is on the
boundary of a creased paper, otherwise outer.

Remark 1. When talking about isomorphism we do not consider the correspondence of
mountain-valley assignment, since for a general quadrilateral mesh the mountain-valley
assignment is not applicable to distinguish different branches of rigid folding motion, which will
be explained at the end of this section. Further, a creased paper is neither necessarily developable
or flat-foldable. A developable creased paper has a planar rigidly folded state where all the folding
angles are zero. A flat-foldable creased paper has a flat rigidly folded state where all the folding
angles are ±π.

Remark 2. Apart from the creased paper mentioned in Definition 1, there might be other creased
papers with a crease pattern isomorphic to other quadrilateral meshes. An example is shown in
figure 2(c). In this "ring" structure the rigid-foldability condition is more complicated than the
quadrilateral creased paper studied here. When generalizing the stacking [13] or cylindrical [14]
structures that are widely used for meta-materials, the analysis of such “ring” structure is indeed
necessary. It would be discussed in a future article in this series.
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Figure 3. (a) A degree-4 single-vertex creased paper. We label the sector angles counterclockwisely. (b) and (c) show

two non-trivial rigidly folded states with the outside edges of the single-vertex creased paper drawn on a sphere as arcs

of great circles, assuming the panel corresponding to α1 is fixed when changing the magnitude of ρ1. The mountain and

valley creases are shown in solid and dashed lines. Generically, for a ρ1 there are two sets of folding angles ρ2, ρ3, ρ4,

where the panels corresponding to α3 and α4 are symmetric to ξ.

In order to study the rigid-foldability of a quadrilateral creased paper, we first need to clarify
the relation among the folding angles around its each single-vertex. The restriction of a creased
paper on a degree-4 vertex and its adjacent panels is called a degree-4 single-vertex creased paper.
As shown in figure 3, a single-vertex creased paper has four sector angles α1, α2, α3, α4 and four
folding angles ρ1, ρ2, ρ3, ρ4. We provide a complete result for the relation among the folding
angles of a degree-4 single-vertex creased paper in Section S1 of the supplementary material,
where all the relations are expressed in terms of tan

ρi
2

in a compact form. Note that the sector
angles are assumed in 0<αi <π. This is reasonable because if a sector angle equals to π (without
loss of generality, suppose α1 = π), then α2 + α3 + α4 ≥ π;

(1) if α2 + α3 + α4 = π, ρ1 = ρ4; ρ2 = ρ3 = 0.
(2) otherwise, ρ2, ρ3 = {a, b} or {−a,−b}, where a, b are non-zero constants.

both of which can be regarded as folding along a crease. Additionally, if a sector angle is greater
than π (without loss of generality, suppose α1 >π), there is no essential difference if substituting
α1 with 2π − α1, which means for a set of sector angles 0<αi <π, switching αi to 2π − αi will
only result in greater possibility of self-intersection of panels.

(b) Rigid-foldability of a quadrilateral creased paper
Here we will introduce the condition (also called the loop condition [5]) for a quadrilateral creased
paper to be rigid-foldable. We start with a special case, where each inner vertex is degree-4, but
there is no cycle in the interior of the crease pattern.

Definition 2. In graph theory, a forest is a disjoint union of trees. A tree is an undirected graph in
which any two vertices are connected by exactly one path.

Proposition 1. (theorem 8 in [11]) If a creased paper satisfies (figure 4(a) and 4(b)):

(1) The interior of crease pattern is a forest.
(2) The restriction of a rigidly folded state on each single creased paper is rigid-foldable.

then this rigidly folded state is generically rigid-foldable. Especially, if the creased paper
described above is also developable, the planar folded state is rigid-foldable.
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(a) (b)

(c) (d)
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row 2

column 2
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column 4
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Figure 4. (a) An example of the creased paper described in proposition 1. (b) shows a rigidly folded state of (a), where

some panels clash and the rigid folding motion halts. The mountain and valley creases are coloured red and blue. (a) and

(b) are plotted by Freeform Origami [5]. Given a quadrilateral creased paper in (c), (d) demonstrates its corresponding

decoupled creased paper, where we “cut” inner creases connecting adjacent columns to make the interior of crease

pattern have no cycle. ρj are the folding angles of the top row.

Regardless of the details on genericity, it is reasonable that the decoupled crease pattern
mentioned in proposition 1 can generate rigid-foldability. In the next proposition we will show
that the rigid-foldability of the creased paper above is closely related to the rigid-foldability of a
quadrilateral creased paper.

Proposition 2. Consider a quadrilateral creased paper (figure 4(c)). If and only if

(1) the corresponding decoupled creased paper (figure 4(d)) is rigid-foldable.
(2) for all i, j, the following equation is satisfied simultaneously in a closed interval

θi,j ≡ φi,j (2.1)
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Figure 5. (a) A Kokotsakis quadrilateral. We label these sector angles as αj , βj , γj , δj (1≤ j ≤ 4). (b) A linear unit

that will be introduced in Section 5(c). It is half of a Kokotsakis quadrilateral and the tangent of half of the folding angles

satisfies w1 = cw2, c is a constant. If two linear units have the same c, they could be stitched together and form a

rigid-foldable Kokotsakis quadrilateral.

then the quadrilateral creased paper is rigid-foldable. Figure 4(d) defines the folding angles θi,j
and φi,j .

Proof. As it is straightforward to move between the quadrilateral creased paper and the tree
structure by cutting or gluing, the sufficiency and necessity are natural.

From the analysis above, the rigid folding motion of a quadrilateral creased paper is the same
as the decoupled creased paper once proposition 2 is satisfied. Based on the information in Section
S1 of the supplementary material, the rigid folding motion of a degree-4 single-vertex creased
paper can generically be parametrized by a single variable, hence the rigid folding motion of
a quadrilateral creased paper can also generically be parametrized by a single variable. We can
calculate the degree of freedom algebraically from the dimension of the tangent space of a given
configuration. For a quadrilateral creased paper, the degree of freedom is generically 1, but might
be greater than 1 at some special points in the configuration space, such as the planar and flat
rigidly folded states.

A quadrilateral creased paper may have a number of branches of rigid folding motion. For a
developable quadrilateral creased paper, we can distinguish different branches of rigid folding
motion by different mountain-valley assignments. This is because, for each branch of every
degree-4 single-vertex creased paper, the sign of every folding angle remains the same when
the rigid folding motion moves away from planar. Each inner vertex should be incident to
three mountain creases and one valley crease, or three valley creases and one mountain crease.
However, the mountain-valley assignment for different branches of rigid folding motions of a
non-developable quadrilateral creased paper does not satisfy the rule above. For example, in a
non-developable degree-4 single-vertex creased paper there might be four mountain creases or
two mountain and two valley creases (figure 6).

In next section we will start constructing more general rigid-foldable quadrilateral creased
papers, which is done by "stitching" together rigid-foldable 3 × 3 quadrilateral meshes.

3. Stitching rigid-foldable Kokotsakis quadrilaterals
Definition 3. A Kokotsakis quadrilateral is a polyhedral surface in R3, which consists of one
centre quadrilateral (the base); four side quadrilaterals, one attached to each side of this centre
quadrilateral; and four corner quadrilaterals placed between each two outer consecutive side
quadrilaterals (figure 5(a)).
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From proposition 2, the next corollary is natural.

Corollary 1. A quadrilateral creased paper is rigid-foldable if and only if the restriction of a
rigidly folded state on each Kokotsakis quadrilateral is rigid-foldable.

Now we explain the process of “stitching”.

Definition 4. For a Kokotsakis quadrilateral Q1, another Kokotsakis quadrilateral Q2 can stitch
with Q1 in the longitudinal or transverse direction if Q2 can share two vertices with Q1 in the
longitudinal or transverse direction.

We provide a nearly complete result on the classification of all rigid-foldable Kokotsakis
quadrilaterals [12] in Section S2 of the supplementary material. Each type here is described by
a system of equations (most of them are trigonometric, some are exponential or elliptic) on its
sector angles. The number of equations m is less than 16, therefore this system of equation can
possibly be solved numerically with 16−m random input sector angles. However, there are three
concerns. First, there might be no solution for sector angles in the real field. Second, even if there is
a solution in the real field, the rigid folding motion may locates in the complexified configuration
space, hence the Kokotsakis quadrilateral will still be rigid in R3. Third, even if there is a solution
in the real field and there is a rigid folding motion in R3, the panels may constantly self-intersect,
which makes the rigid folding motion not valid.

Then, given any quadrilateral creased paper, we can interpret it by stitching together rigid-
foldable Kokotsakis quadrilaterals, either from the same or different types. In other words, if
all possible stitching of rigid-foldable Kokotsakis quadrilaterals could be found, we will get the
complete description of a rigid-foldable quadrilateral creased paper. In order to grasp the "non-
trivial" generalization of the Miura-ori, two restrictions for our object of study are listed below.

(1) There is at least one non-trivial rigid folding motion.

Definition 5. Following the terminology introduced in [12], A rigid folding motion of a
creased paper is called trivial if a folding angle remains constant during this rigid folding
motion. A trivial rigid-foldable Kokotsakis quadrilateral only has trivial rigid folding
motion.

We think this requirement is reasonable because when designing a creased paper, a
crease that does not participate in the folding seems redundant. If a large quadrilateral
creased paper contains a trivial rigid-foldable Kokotsakis quadrilateral, any rigid folding
motion of this large quadrilateral creased paper will be trivial, therefore the trivial rigid-
foldable Kokotsakis quadrilaterals will not be considered (Type 7 in Section S2 of the
supplementary material).

(2) The sector angles can be solved quadrilateral by quadrilateral, i.e. the design of the entire
quadrilateral creased paper never requires the solution of equations where variables are
sector angles from more than one Kokotsakis quadrilateral.

We raise this requirement mainly because even if a quadrilateral creased paper is
designed from possible stitchings, generically the number of total constraints will be
much more than the number of variables as the size increases. A compromise is making
the design process to be as follows. Start from a Kokotsakis quadrilateral. Set its sector
angles as known variables and solve the sector angles of the neighbouring Kokotsakis
quadrilaterals, quadrilateral by quadrilateral. Continue doing this until all the sector
angles are solved. Two advantages of this requirement are:
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(d) (e)

(b) (c)
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Figure 6. Here we show examples for switching a strip and adding a parallel strip. (a) shows a rigid-

foldable and developable quadrilateral creased paper, (b) is a rigidly folded state of (a). We use

{ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, φ1, φ2, φ3, φ4, φ5, φ6} to represent the tangent of half of the folding angles on

these labelled inner creases. In (c), the sector angles on panels of the middle row are replaced by their

complements to π, and after switching a strip {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}→ {ρ1,−ρ2, ρ3, ρ4,−ρ5, ρ6},
{φ1, φ2, φ3, φ4, φ5, φ6}→ {−φ−1

1 ,−φ−1
2 ,−φ−1

3 ,−φ−1
4 ,−φ−1

5 ,−φ−1
6 }. Generally, switching a strip will

make a developable creased paper non-developable. (d) shows how a parallel strip is added, which is demonstrated with

a dashed cycle. In (e), the magnitude of new folding angles are illustrated.

(a) each step completed by the above process will result in a rigid-foldable creased
paper.

(b) when adding a new Kokotsakis quadrilateral, we don’t need to adjust the solved
part because there is enough design freedom.

In the next sections, we will demonstrate several methods to construct a large rigid-foldable
quadrilateral creased paper satisfying the two additional requirements above. We understand that
this method will not be comprehensive, i.e. there might be rigid-foldable quadrilateral creased
papers whose sector angles can only be solved as a whole, but it is unlikely practicable to find
such cases.

4. Two operations that preserve the rigid-foldability
Before presenting the catalogue, we provide two operations that preserve the rigid-foldability of
a quadrilateral creased paper, named as “switching a strip” and "adding a parallel strip".

(a) Switching a strip
Definition 6. Switching a strip means to replace all the sector angles on a column or a row of
panels by their complements to π, which is extended from the definition of switching a boundary
strip in [12] (figure 6(a–c)).

Theorem 1. Switching a strip preserves the rigid-foldability of a quadrilateral creased paper.
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Proof. First consider switching a transverse strip. In figure 6, (a) shows a rigid-foldable
and developable quadrilateral creased paper, (b) is a rigidly folded state of (a). We
choose the middle row of panels to be switched, the sector angles are replaced by their
complements to π. The tangent of half of folding angles on the labelled inner creases are
denoted by {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, φ1, φ2, φ3, φ4, φ5, φ6}. Following Lemma 4.5 in [12], after
switching this strip {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}→ {ρ1,−ρ2, ρ3, ρ4,−ρ5, ρ6}, {φ1, φ2, φ3, φ4, φ5, φ6}→
{−φ−1

1 ,−φ−1
2 ,−φ−1

3 ,−φ−1
4 ,−φ−1

5 ,−φ−1
6 }, which is shown in figure 6(c). For a m× n

quadrilateral mesh, the related folding angles on this strip are changed in the same way. Therefore
from proposition 2, switching a strip preserves the rigid-foldability of a quadrilateral creased
paper. The proof for switching a longitudinal strip is similar.

Note that when switching a strip, the crease lengths might need to be adjusted.

(b) Adding a parallel strip
Given a quadrilateral creased paper, it is always possible to add another row or column of vertices
with new inner creases parallel to its adjacent row or column, as shown in figure 6(a) and 6(d).
After adding a parallel strip, the new folding angles are shown in figure 6(e), therefore from
proposition 2, adding a parallel strip also preserves the rigid-foldability of a quadrilateral creased
paper.

5. Several types of large rigid-foldable quadrilateral creased
papers

In this section we will list several types of rigid-foldable quadrilateral creased papers following
the two restrictions mentioned in Section 3. For all these types, switching some strips and adding
some parallel strips leave the type unchanged. The justification for this categorization is provided
in Section 7. All the information on the names of rigid-foldable Kokotsakis quadrilaterals and the
relation among sector angles of each type is provided in Section S2 of the supplementary material.

(a) Orthodiagonal
This type is stitched from orthodiagonal Kokotsakis quadrilaterals (figure 7(a)). The independent
input sector angles are αj (0≤ j ≤ n) and βi (1≤ i≤ 2m− 1). The other sector angles γij can be
solved one by one as follows.

(1) In the first row,
cosα0 cos γ11 = cosα1 cosβ1

cosαj−1 cos γ1,j = cosαj cos γ1,j−1, 2≤ j ≤ n
(5.1)

(2) From the second row,

tanβ2i−1

tanβ2i
=

tan γ2i−1,j

tan γ2i,j
, 1≤ i≤m− 1, 1≤ j ≤ n

cosβ2i cos γ2i+1,1 = cosβ2i+1 cos γ2i,1, 1≤ i≤m− 1

cos γ2i,j−1 cos γ2i+1,j = cos γ2i,j cos γ2i+1,j−1, 1≤ i≤m− 1, 2≤ j ≤ n

(5.2)

Typical geometric features of this type are:

(1) Each column or row of inner creases are co-planar.
(2) Each plane formed by a column of inner creases is orthogonal to each plane formed by a

row of inner creases. Hence the name “orthodiagonal”.
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(a) (b)

α1

π-α1
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α2

π-α2 α3
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β5
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π-γ11
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π-γ21
γ31

π-γ31
γ41

π-γ41

γ12

π-γ12
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π-γ22

γ32

π-γ32

γ42

π-γ42
γ51

π-γ51 γ52

π-γ52

γ13
γ23
γ33

γ43
γ53

Figure 7. An example of the developable case of the orthodiagonal type mentioned in Remark 3. (a) shows the relation

among the sector angles, the mountain and valley creases are shown in solid and dashed lines. (b) is a rigidly folded

state of (a). Each column or row of inner creases are co-planar, and each plane formed by a column of inner creases is

orthogonal to each plane formed by a row of inner creases. (b) is plotted by Freeform Origami [5], where the mountain

and valley creases are coloured red and blue.

Remark 3. If β1 = π − α0 and β2i+1 = π − β2i (1≤ i≤m− 1), this quadrilateral creased paper
will also be developable. If β1 = α0 and β2i+1 = β2i (1≤ i≤m− 1), this quadrilateral creased
paper will also be flat-foldable.

(b) Isogonal
This type is the union of flat-foldable quadrilateral creased paper described in [5] and its variation
from switching some strips. Typical geometric features of this type are:

(1) If at each inner vertex the sum of opposite sector angles equals to π, this isogonal type is
flat-foldable. Otherwise it is not flat-foldable.

(2) The absolute value of folding angles on a row or column of inner creases are equal.

This type is named isogonal because at every inner vertex opposite sector angles can be equal
after switching some strips. Note that the property of “a rigidly folded state can guarantee a rigid
folding motion” described in [5] is special for the isogonal type because here the existence of a
rigidly folded state is equivalent to equation (2.1). For other types the rigid-foldability condition
on sector angles is more complicated, which prevents similar conclusions.

(c) Forward linear repeating
Before presenting how to construct this type, we introduce linear units (figure 5(b)) and the
stitching of linear units. Full information of linear units is provided in Type 4 of Section S2
of the supplementary material, and different types of linear units are labelled as 4.1(a), 4.1(b),
4.2(a), 4.2(b), 4.3(a), 4.3(b), 4.4(a), 4.4(b) and 4.5. Stitching a linear unit with another linear unit
means these two linear units form a Kokotsakis quadrilateral. They do not share vertices, but the
folding angles on the matching creases must be the same. Linear unit 1 can stitch with linear unit
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2 if δ1 + δ2 + δ3 + δ4 = 2π and corresponding linear coefficients c1 = c2. If two linear units are
stitched in this way, we say they are stitched along the linear direction.

This type of rigid-foldable quadrilateral creased paper is formed by stitching a row of linear
units along the linear direction, and repeating this row orthogonal to the linear direction, which
is why it is named "forward linear repeating". To allow repeating, apart from requiring δ1 + δ2 +

δ3 + δ4 = 2π, we should also set γ1 + γ2 + γ3 + γ4 = 2π (figure 5(a)). If using linear unit 4.1, κ1
and κ2 should either both be sin α−β

2 / sin α+β
2 or both be cos α−β2 / cos α+β2 . With the restriction

above, the rest of the sector angles can be solved numerically. Some example creased papers are
shown in figure 8.

An important notice is there might be “degeneration” (which is discussed in Section 8) in the
solutions. These degenerations can be found both analytically and numerically, and we provide
this information in Table 1. Although it will not prevent solutions, the relationships among sector
angles will be more special. In order not to make redundant classification, we will not split this
type into smaller classes.

4.2(a) 4.2(b) 4.3(a) 4.3(b) 4.4(a) 4.4(b)
4.2(a) 2© 2© 3© 3© 1© 1©
4.2(b) 2© 1© 1© 1© 1©

Table 1. This table shows when the stitching of linear units degenerates. 1© means the Kokotsakis quadrilateral formed

by two linear units will degenerate to a Kokotsakis quadrilateral in the parallel repeating type (figure 8(a)). 2© means it will

degenerate to a Kokotsakis quadrilateral in the orthodiagonal type (Section 5(a)). 3© means both 1© and 2© are possible.

(d) Inverse linear repeating
This type is formed by stitching a row of linear units 4.1 and 4.3 orthogonal to the linear direction,
and repeating this row along the linear direction, which is why it is named as "inverse linear
repeating". To allow repeating, apart from requiring δ1 + δ2 + δ3 + δ4 = 2π, we should also set
α1 + α2 + α3 + α4 = 2π (figure 5(a)). If using linear unit 4.1, κ1 and κ2 should either both be
sin α−β

2 / sin α+β
2 or both be cos α−β2 / cos α+β2 . An example is shown in figure 9(a) and 9(b).

(e) Conic repeating
This type is formed by stitching a row of type 2.2 of the rigid-foldable Kokotsakis quadrilaterals,
and repeating this row in the longitudinal direction. To allow repeating, apart from requiring
δ1 + δ2 + δ3 + δ4 = 2π, we should also set α1 + α2 + α3 + α4 = 2π (figure 5(a)). An example is
shown in figure 9(c) and 9(d).

(f) Hybrid
This type is constructed by the following steps. An example is shown in figure 9(e) and 9(f). For
the linear compounds type of rigid-foldable Kokotsakis quadrilateral, if it is stitched from two
linear units labelled 4.m and 4.n (1≤m≤ 5, 1≤ n≤ 5, either (a) or (b)), we label it as m-n.

(1) Choose the first Kokotsakis quadrilateral from types 1-1, 5.1, 5.2, 6.2, 6.3, 6.7 or 6.8.
(2) In both the row and column incident to the first Kokotsakis quadrilateral, choose types

1-1, 1-2, 1-3, or 1-4 to stitch with the first Kokotsakis quadrilateral.
(3) Fill the rest of the creased paper with type 1-1.
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(a) (b)

(c) (d)

(e) (f)

β1
α1

π-α1
π-δ1

γ1
δ1

π-β1
π-γ1

β1
α1

π-α1
π-δ1

γ1
δ1

π-β1
π-γ1

100115
6580

10792
8873

7772.50
103107.50

83.0180.50
96.9999.50

100115
6580

10792
8873

7772.50
103107.50

83.0180.50
96.9999.50

98103
8277

94.2796.99
85.7383.01

98103
8277

94.2796.99
85.7383.01

7292
88108

95.7375.73
84.27 104.27

7292
88108

95.7375.73
84.27 104.27

100110
7080

105115
6575

100110 7080

105
115 65

75

97.47 82.53
87.6092.40

87.4092.60
82.4697.53

82.53
87.6092.40

87.40
92.60

82.4697.53

73.1497.47
9792.40

96.5492.60

73.3297.53

73.14
97.47

9792.40

96.5492.60
73.3297.53

97.47

82121.31

58.69
98

87.7768.46

111.5492.23
82121.31
58.6998

87.77
68.46

111.5492.23

Figure 8. Examples of the forward linear repeating. All the sector angles are labelled in degrees. The independent input

sector angles are coloured red in (a), (c) and (e). Other sector angles are solved numerically. The mountain and valley

creases are shown in solid and dashed lines. (a) is formed by stitching “parallel linear units”, one of which is illustrated

with a dashed cycle. We name this type as “parallel repeating”. This is a typical special rigid-foldable quadrilateral creased

paper, and some other stitchings of linear units will degenerate to this case. (b) is a rigidly folded state of (a). (c) is formed

by 4.1(b)–4.2(b)–4.2(b)–4.1(b). (d) is a rigidly folded state of (c). (e) is formed by 4.1(b)–4.3(b)–4.4(b)–4.1(b). (f) is a

rigidly folded state of (e). (b), (d) and (f) are plotted by Freeform Origami [5], where the mountain and valley creases are

coloured red and blue.
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(c) (d)

(e) (f)

(a) (b)

96102
8181

104100
74.4281.58

96102
8181

104100
74.4281.58

94.8287.28
67.84110.06

111.1664.94

81.60102.30

77.77 76.87
110.12105.24

70.30
75.76

108.13105.81

106.23
70.78
91.41

91.58

87.59
98.00

105.64
68.77
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75109 105
71

96.56106.05
73.95

83.44

76.62
107 103.38
73

94.94 105.59
85.06

74.41

78.22
105 101.78
75

91.83103.99 76.01
88.17

7695
85104

86110
9470

76.1795.17
84.83103.83

110.1785.17

69.8394.83

85104
7695

9470
86110

76.17
95.17

84.83103.83

110.1785.17

69.8394.83

7695
85104

86110
94

70

76.1795.17
84.83103.83
110.1785.17
69.8394.83

85104
7695

9470
86110

76.1795.17
84.83103.83

110.17
85.17

69.83
94.83

94.8287.28
67.84110.06

111.1664.94
81.60102.30

77.77 76.87
110.12105.24

70.30
75.76

108.13105.81 106.23
70.78
91.41

91.58

87.59
98.00

105.64
68.77

10179
79.05100.95

10377
77.05102.95

79.35
81.45

98.55100.65

82.15
79.81

100.1997.85

82.59
85.27

94.7397.41

10575
75.06104.94
98.0198.66 81.34

81.99

98.0397.31
82.69

81.97

94.4295.24
84.76

85.58

Figure 9. Examples of the inverse linear repeating, conic repeating and hybrid type. All the sector angles are labelled in

degrees. The independent input sector angles are coloured red. Other sector angles are solved numerically. The mountain

and valley creases are shown in solid and dashed lines. (a) is an example of the inverse linear repeating. Here a linear

unit 4.1(b) is illustrated with a dashed cycle to show the difference of linear direction in the forward and inverse linear

repeating. (b) is a rigidly folded state of (a). (c) is an example of the conic repeating. (d) is a rigidly folded state of (c). (e)

is an example of the hybrid type. The first Kokotsakis quadrilateral is of type 6.1, its adjacent row and column are formed

by stitching of type 1-2, the rest part is filled with type 1-1. (f) is a rigidly folded state of (e). (b), (d) and (f) are plotted by

Freeform Origami [5], where the mountain and valley creases are coloured red and blue.
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(g) Tiling
This type is presented in [10]. It is developable and has 3 independent input sector angles α, β, γ.
Setting δ= 2π − α− β − γ, at each vertex, the sector angles are α, β, γ, δ or π − α, π − β, π −
γ, π − δ. We can interpret this type as a combinatorial special solution of the stitching of type
2.2 of the rigid-foldable Kokotsakis quadrilaterals, which is not formed by repeating.

6. Number of branches of rigid folding motion
In this section we provide a list of the number of branches of rigid folding motion for the different
types listed above.

Type Number of branches for a m× n mesh
Miura-ori only upper bound known [15]

Orthodiagonal 1
Isogonal 1

Forward linear repeating from 1 to 2n

Inverse linear repeating 1
Conic repeating 1

Hybrid 1
Tiling from 2 to 2m + 2n − 2 [10]

Table 2. Number of branches of rigid folding motion for each type of rigid-foldable quadrilateral creased paper presented.

For forward linear repeating, linear units 4.1, 4.2 and 4.3 only have one branch, but 4.4 and 4.5 have two branches. The

overall number is counted by multiplying the number of branches of each column.

Generally, a rigid-foldable quadrilateral creased paper with more symmetry will have a greater
number of branches. For example, the number for the tiling type and Miura-ori could increase
exponentially. However, for other types presented in this article, the number increases linearly or
stays at 1.

7. Justification for the possible types presented
In this section we will describe some of the underlying mathematical structure that leads to the
different types presented in Section 5.

In Section S1 of the supplementary material, a degree-4 single-vertex creased paper is classified
as follows, based on different types of the configuration space.

Definition 7. Consider the following equation

α± β ± γ ± δ= 0 (mod 2π) (7.1)

A degree-4 single-vertex creased paper is said to be

(1) an isogram, if α= γ, β = δ, and an antiisogram, if α+ γ = π, β + δ= π.
(2) a deltoid, if α= β, δ= γ or α= γ, β = δ, and an antideltoid, if α+ β = π, δ + γ = π or α+

γ = π, β + δ= π.
(3) of conic type, if equation (7.1) has exactly one solution;
(4) of elliptic type, if equation (7.1) has no solution;

When stitching different types of rigid-foldable Kokotsakis quadrilaterals, vertices that are
shared between the quadrilaterals must be of the same type. Note that if two Kokotsakis
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quadrilaterals cannot stitch with each other, switching a strip cannot make them stitchable since
it does not change the type of a vertex, at most switching from deltoid to antideltoid, or isogram
to antiisogram. We also need to check whether other relations among the existing sector angles
are compatible with the new Kokotsakis quadrilateral we plan to stitch.

Type 1.1 can only stitch with itself, forming one type of rigid-foldable quadrilateral creased
paper, called orthodiagonal (Section 5(a)). The geometric properties mentioned can be examined
directly. We have considered possible rotation of Kokotsakis quadrilaterals, but it does not
increase the variation.

For other types of Kokotsakis quadrilaterals a proposition is provided for further discussion.

Proposition 3. (1) For any type of rigid-foldable Kokotsakis quadrilateral, if the 8 sector
angles around two adjacent vertices are given and compatible with the constraints on
sector angles, there is enough design freedom to solve the other 8 sector angles.

(2) Only for types 4, 5, 6.2, 6.4, 6.5, 6.7, 6.8 and 6.9, if the given 12 sector angles around three
vertices are compatible with the constraints on sector angles, then if the unsolved vertex
is an (anti)isogram, there is enough design freedom to solve the other 4 sector angles.

(3) For type 6.6, if the given 12 sector angles around three vertices are compatible with the
constraints on sector angles, then if the unsolved vertex is elliptic, there is enough design
freedom to solve the other 4 sector angles.

(4) For other types, even if the given 12 sector angles around three vertices are compatible
with the constraints on sector angles. Generically there is no solution for the other 4 sector
angles.

Proof. The equations of rigid-foldability condition on sector angles in each type of 1.2 and 2–6 are
independent. If the 8 sector angles around two adjacent vertices are given without contradiction
to the constraints on sector angles, the number of remaining equations is no more than 8, and
we say there is enough design freedom for the other 8 sector angles. If 12 sector angles are given
around three vertices which are compatible with the constraints on sector angles, only for the
cases mentioned in (2) and (3) the number of remaining equations is 4, otherwise it is greater than
4. In this sense, we say generically there is no solution for the other 4 sector angles.

For type 1-1 (the labelling is explained in Section 5(f)), stitching with itself forms one type
of large rigid-foldable quadrilateral creased paper, called isogonal (Section 5(b)). Other stitching
possibilities of type 1-1 are included in the discussions on type 4.

For other types, proposition 3 only provides an estimate. However, this estimate has been
verified numerically. Apart from the cases given in proposition 3(2) and 3(3), we have not found it
to be possible to obtain a large quadrilateral creased paper just by solving equations quadrilateral
by quadrilateral. Therefore our next step is to apply symmetry to construct special solution. Note
that from Section 4, many other variations based on these special solutions can be obtained by
switching some strips and adding some parallel strips.

(a) Method 1
This method is to stitch compatible categories of rigid-foldable Kokotsakis quadrilaterals in
one row by solving equations quadrilateral by quadrilateral, and repeating this row in the
longitudinal direction to obtain a large quadrilateral creased paper, which makes the creased
paper rowwise-periodical. From proposition 3 it is possible to solve a row, and when constructing
special solutions in the longitudinal direction, we should consider that each time when solving 8
sector angles based on 8 known sector angles, the number of additional constraints to allow such
special solutions plus the number of original constraints should not exceed 8. The reason for only
using repeating here will be explained in Section 7(c).

Consider generating the row of Kokotsakis quadrilaterals for repeating in the longitudinal
direction. Apart from the initial quadrilateral, each time we add a quadrilateral and solve 8 sector
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angles based on 8 known sector angles. Therefore it is necessary to analyse if the 8 sector angles
around two adjacent vertices are given, which type of rigid-foldable Kokotsakis quadrilateral
is still rigid-foldable after repeating in the longitudinal direction. Note that those rigid-foldable
Kokotsakis quadrilaterals might be able to rotate when stitching. To make it clear, here we describe
the placement of a Kokotsakis quadrilateral as “regular” if it is aligned with the description in
Section S2 of the supplementary material, or “rotated” if the placement is orthogonal. For regular
position, an extra condition α1 + α2 + α3 + α4 = 2π, must be added to allow repetition because
the sum of sector angles on each inner panel should be 2π. For rotated position, the extra condition
becomes γ1 + γ2 + γ3 + γ4 = 2π.

Proposition 4. The following statements describe, for each type of rigid-foldable Kokotsakis
quadrilateral, whether it is possible to solve 8 sector angles numerically based on 8 known sector
angles of adjacent two vertices such that after repeating the new Kokotsakis quadrilateral is still
rigid-foldable.

(1) For types 2.1 and 2.2, it is possible to obtain another rigid-foldable Kokotsakis
quadrilateral by repeating.

(2) For type 1-1, at each vertex there is a coefficient κ, which can be chosen from
sin α−β

2 / sin α+β
2 or cos α−β2 / cos α+β2 . If the number of each choice is 0, 2 or 4, for either

the regular or rotated position it is possible to obtain another rigid-foldable Kokotsakis
quadrilateral by repeating, otherwise not.

(3) For type 4 (excluding 1-1), for the rotated position it is possible to obtain another rigid-
foldable Kokotsakis quadrilateral by repeating. When there is a linear unit 4.1, κ1 and κ2
should be both sin α−β

2 / sin α+β
2 or both cos α−β2 / cos α+β2 .

(4) For type 1-3, for the regular position it is possible to obtain another rigid-foldable
Kokotsakis quadrilateral by repeating. When there is a linear unit 4.1, κ1 and κ2 should
be both sin α−β

2 / sin α+β
2 or both cos α−β2 / cos α+β2 .

(5) For type 6.1, for either the regular or rotated position, it is possible to obtain another
rigid-foldable Kokotsakis quadrilateral by repeating.

(6) For types 6.4 and 6.5, for the rotated position it is possible to obtain another rigid-foldable
Kokotsakis quadrilateral by repeating.

(7) For other types or placements generically it is not possible to obtain another rigid-foldable
Kokotsakis quadrilateral by repeating.

Proof. Statements (1), (5) and (6) can be verified directly.
Statements (2), (3) and (4): For type 4, repeating in either the regular or rotated position

preserves the linear relations among the tangent of half of the folding angles. For linear unit 4.1,
if κ1 and κ2 are both sin α−β

2 / sin α+β
2 or both cos α−β2 / cos α+β2 , the linear coefficient c remains

the same after repeating in either the regular position or the rotated position, otherwise only the
sign of c is changed. For linear unit 4.3, c remains the same after repeating in either the regular
position or the rotated position. For linear units 4.2–4.5, c remain the same after repeating in the
rotated position, while in the regular position change its value. Since when two linear units stitch
with each other the linear coefficient must be the same, the proposition holds.

Statement (7): For all the other types or placements, either the additional constraints to allow
repeating contradict with the original constraints on sector angles, or the number of additional
constraints to allow repeating plus the number of original constraints on sector angles is greater
than 8. In this sense we say generically these types or placements are not suitable for repeating.

The possible types that can be used to stitch with other types also determine the first
Kokotsakis quadrilateral in this row. However, our numerical studies have lead to the following
restrictive observations about the selection of types.

Observation 1. Only non-real numerical solutions are found for types 2.1, 5.3, and 6.9.
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Observation 2. The only numerical solution found for type 6.1 degenerates to a Kokotsakis
quadrilateral in the “parallel repeating” type shown in figure 8(a).

Observation 3. Types 6.4 and 6.5 have numerical solutions, but are rigid in R3.

Then considering the compatibility among all the types and placements, the possible stitchings
for method 1 are listed as follows. The row of Kokotsakis quadrilaterals to be repeated can be
constructed by the following ways.

(1) Forward Linear Repeating: Stitch among the linear units of type 4 in the rotated position
(Section 4(c)).

(2) Inverse Linear Repeating: Stitch among type 1-3 in the regular position (Section 4(d)).

Just from the type of vertices in 1-3, we can choose types 1-3, 5.1, 6.3, 6.4 and 6.5 as the
first Kokotsakis quadrilateral. However, from Observation 3, 6.4 and 6.5 are not suitable.
More careful examination on types 5.1 and 6.3 shows that the additional requirements to
allow repeating contradicts with the rigid-foldability condition on sector angles.

(3) Conic Repeating: Stitch among type 2.2. (Section 4(e))

Apart from linear units, from Observations 1–3 the only remaining type is 2.2. What we
then need to consider is choosing the first Kokotsakis quadrilateral in this row, which
can be types 2.2, 5-5, and 6.8. Choosing 5-5 will become a special case of 3.2. More
careful examination on type 6.8 shows that the additional requirements to allow repeating
contradicts with the rigid-foldability condition on sector angles.

(b) Method 2
This method is to construct a row and a column of rigid-foldable Kokotsakis quadrilaterals, then
consider the stitching of solvable cases mentioned in proposition 3(2) and 3(3) to obtain a large
quadrilateral creased paper. It is necessary to make sure that “solving one vertex based on three
vertices” can proceed in both longitudinal and transverse directions, which excludes type 6.6.
Considering solving an (anti)isogram, the possible stitchings are presented in Section 4(f), called
the hybrid type. From Observations 1 and 3, types 5.3, 6.4, 6.5 and 6.9 are excluded when choosing
the first Kokotsakis quadrilateral.

(c) Other special solutions
It is natural to consider whether other operations are possible after constructing a row of rigid-
foldable Kokotsakis quadrilaterals. For instance, the new rows can be generated by substituting
some sector angles by their complements to π, or switching the position of some sector angles.
From our observation, generically such operations

(1) do not result in another rigid-foldable Kokotsakis quadrilateral.
(2) need two or more extra conditions for ensuring the sector angles on each inner panel to

be 2π, where the total number of constraints exceeds 8.

Therefore only repeating is considered in method 1. We do, however, admit that repeating
is only an elementary special solution, and possibly these operations could be applied in some
non-generic cases.
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Further, there are some more special solutions which are more dependent on symmetry. [10]
provided the tiling type in (Section 4(g)). However, it is unclear to us how to use “tiling” to
generate a large quadrilateral creased paper from a solved row of rigid-foldable Kokotsakis
quadrilaterals. Some insights on finding more types of rigid-foldable quadrilateral creased papers
are provided in Section 8.

8. Discussion

(a) Comment on further solutions
Here we point out some considerations for further exploration of large rigid-foldable
quadrilateral creased papers.

(1) Although for a large quadrilateral creased paper, generically the number of constraints for
rigid-foldability is much greater than the number of sector angles, it maybe still possible
to solve this system as a whole and find some special solutions.

(2) Following the idea of solving the sector angles quadrilateral by quadrilateral, in Section 7
we move forward only by comparing the number of constraints and variables. However,
this is not strict for non-linear systems. By studying the rigid-foldability conditions more
carefully there may be further special solutions. Then it might be possible to go beyond
the known types and find more general rigid-foldable quadrilateral creased papers.

(b) Comment on the numerical results
For the types mentioned above, only the orthodiagonal, isogonal, parallel repeating, and tiling
do not require solving complicated equations, while other types need some input sector angles
and solve the rest of the sector angles numerically. We will comment on these numerical solutions
here.

(1) When making examples we used fsolve in MATLAB with random input sector angles and
initial values for solution. The numerical solutions can be sensitive to the input sector
angles and initial values. Given a set of input sector angles there might be no solution, or
only complex solutions, as mentioned in Observation 1. Sometimes an exact numerical
solution can be obtained only after trying many different input sector angles and initial
values. Changing the position of input sector angles will also affect the numerical result.

(2) Most of equations in the rigid-foldability condition are trigonometric, but some are
exponential or elliptic. Trigonometric equations can be transformed into polynomial
equations with the following relations:

cosα=
1− tan2

α

2

1 + tan2
α

2

, sinα=
2 tan

α

2

1 + tan2
α

2

(8.1)

which has the advantage that the numerical solution of a system of polynomial equations
has been well studied. It would be possible to apply more advanced numerical methods
here for better results.

(3) In Observation 3, we mentioned that types 6.4 and 6.5 can be solved, but are rigid in
R3. This is because the rigid-foldability constraints on sector angles are derived in the
complexified configuration space, where the real folding angles may be isolated.

Another phenomenon in the numerical solution is called degeneration, which can be divided
into two types.
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(a) An (anti)deltoid or (anti)isogram may degenerate to a cross (two pairs of collinear
creases). A conic vertex may degenerate to an (anti)deltoid or (anti)isogram. An elliptic
vertex may degenerate to a conic vertex. Further degeneration is also possible.

(b) There might be unexpected relations among the sector angles, such as in figure 8(e) and
8(f), some inner creases in different linear units are parallel; and in figure 9(a) and 9(b)
when solving new sector angles in a row some values recur.

Apart from a vertex becoming a cross, such degenerations are acceptable.

(c) Choice of crease lengths and possible self-intersection
After finding all the sector angles of a large quadrilateral creased paper, the length of inner creases
in a row and a column is adjustable. When plotting the creased paper based on a set of known
sector angles, the length of inner creases should be adjusted to avoid intersection of inner creases
at some points other than vertices.

Further, even if the creased paper is successfully constructed, there might be self-intersection
in the rigid folding motion. Apart from simulation, efficient methods to predict self-intersection
are still unknown. We provide a discussion in [11].

(d) Perturbation Method
If consider finding rigid-foldable quadrilateral creased paper numerically, a possible method is
applying perturbation to Miura-ori (in R3) and examining the error step by step. If the series
converges, the limit would be a new solution. This numeric method might help us to find new
variations that cannot be explained by the analytical solutions mentioned in this article. However,
the algorithm must be carefully designed to ensure convergence and be capable of finding new
solutions.

9. Conclusion
Based on a nearly complete classification of rigid-foldable Kokotsakis quadrilaterals from Ivan
Izmestiev, this paper describes several new variations of large rigid-foldable quadrilateral creased
papers, without any restriction on the developability or flat-foldability. The rigid folding motions
of these new variations are more irregular but still have single degree of freedom.
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