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Abstract

This paper presents conditions for self-equilibrium and super stability of dihedral ‘star’ tensegrity
structures, based on their dihedral symmetry. It is demonstrated that the structures are super
stable if and only if they have an odd number of struts, and the struts are as close as possible
to each other. Numerical investigations show that their prestress stability is sensitive to the
geometry realisation.
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1. Introduction
In this paper, we describe dihedral ‘star’ tensegrity structures which we derive from

the classic dihedral prismatic tensegrity structures. The horizontal cables in each of the
two parallel circles containing the nodes in a prismatic structure are replaced by a star of
cables in a ‘star’ structure, with a new centre node. An example ‘star’ structure is shown
in Fig. 1(b), along with the parent prismatic structure in Fig. 1(a). Also shown in Fig. 1(c)
is an embellishment of the structure, where there exists a centre member connected to the
two centre nodes.

There is a clear link between the star structures, and the parent prismatic structures
that were studied by Connelly and Terrell (1995); Zhang et al. (2008a). Indeed, we shall
see that the equilibrium positions of the nodes, and self-stress forces in the vertical cables
and the struts, are identical in the star and prismatic structures, as long as there is no
centre member. However, the star structure has many more infinitesimal mechanisms than
its parent prismatic structure: at each of the boundary nodes, a strut is in equilibrium
with two cables, all of which must therefore lie in a plane; thus, out-of-plane movement
of the node must be an infinitesimal mechanism, and there are at least six infinitesimal
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Fig. 1. Tensegrity structures that are of the same dihedral symmetry D3. The thick lines represent
struts, and the thin lines represent cables.

mechanisms—in fact there is another infinitesimal mechanism corresponding to the exis-
tence of one self-stress mode of the structure By contrast, there is only one non-rigid-body
infinitesimal mechanism in the prismatic tensegrity structure. Despite this, we will show
that many dihedral star tensegrity structures can be stable, and further, that in some
cases they are super stable, which implies that they are stable for any level of self-stress,
independent of the stiffness of the members.

Following this introduction, the paper is organized as follows: Section 2 uses the sym-
metry of a star structure to find its configuration and self-stress forces in the state of self-
equilibrium. Section 3 presents the necessary and sufficient condition for an ‘indivisible’
structure. Section 4 block-diagonalises the force density matrix and finds the condition, in
terms of connectivity of vertical cables, for super stability of the star structures; prestress
stability of the structures that are not super stable is numerically investigated. Section 5
briefly concludes the study on the star structures, and discusses the stability properties
of those with centre members.

2. Configuration
In this section, we introduce the connectivity and geometry of a general star structure,

and find the internal forces that equilibrate every node. The structure has dihedral symme-
try, and this symmetry allows us to calculate symmetric state of self-stress by considering
the equilibrium equations of only representative nodes.

2.1 Symmetry and connectivity
We are considering star tensegrity structures that have dihedral symmetry, denoted Dn

(in the Schoenflies notation): there is a single major n-fold rotation (Ci
n) axis, which we

assume is the vertical, z-axis, and n 2-fold rotation (C2,j) axes perpendicular to this major
axis. In total there are 2n symmetry operations. A star structure has the same apperance
before and after the transformation by applying any of these symmetry operations.

Consider a specific set of elements (nodes or members) of a structure with symmetry
G. If one element in a set can be transformed to all of the other elements of that set by
the symmetry operations in G, then this set of elements are said to belong to the same
orbit. A structure can have several different orbits of elements.

In contrast to prismatic structures, which have only one orbit of nodes, there are two
orbits of nodes in star structures—boundary nodes and centre nodes, as shown in Fig. 2:
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Fig. 2. The dihedral star tensegrity structure D1
4. R and H are the radius of the circle of boundary

nodes and height of the structure, respectively.

• There are 2n ‘boundary’ nodes arranged in two horizontal circles of radius R around
the vertical z-axis; there is a one-to-one correspondence between the boundary nodes
and the symmetry operations. (When there is a one-to-one correspondence between
elements and symmetry operations, the orbit is called a regular orbit).

• There are two ‘centre’ nodes that lie on the centres of the two horizontal circles; the
cyclic (n-fold) rotation operations do not change the locations of these nodes, while the
2-fold rotation operations swap their positions.

Thus, there are in total 2n + 2 nodes. The two horizontal circles containing the boundary
nodes are at z = ±H/2, and the centre nodes are also at z = ±H/2, as shown in Fig. 2(c).

There are three orbits of members: radial cables, vertical cables and struts. The members
in each orbit have the same length and internal force, and therefore, the same force density
(ratio of internal force to length). Each of the boundary nodes in a circle is connected by
a ‘radial’ cable to a centre node. Hence, there are 2n radial cables, and each symmetry
operation transforms a radial cable into one of the other radial cables; i.e., there is a one-
to-one correspondence between the radial cables and the symmetry operations (the radial
cables form a regular orbit). Each boundary node is connected by a strut and a ‘vertical’
cable to boundary nodes in the other circle. Thus, there are only n vertical cables, and n
struts: there is a one-to-two correspondence between the vertical cables (or struts) and the
symmetry operations. Each vertical cable and strut intersects one of the 2-fold horizontal
rotation axes, and this 2-fold operation transforms this vertical cable (or strut) into itself.

It is possible to have different connectivities of the vertical cables and struts for any
n > 3. We use the notation Dv

n to describe the connectivity of a star tensegrity with
Dn symmetry, where v describes the connectivity of the vertical cables, assuming that
connectivity of struts is fixed. The boundary nodes in the upper and lower circles are
respectively numbered as N0, N1 . . . , Nn−1 and Nn, Nn+1 . . . , N2n−1, and the upper and
lower centre nodes are numbered as N2n and N2n+1, respectively. We describe the con-
nectivity of a reference node N0 as follows—all other connections are then defined by the
symmetry.

(1) Without loss of generality, we assume that a strut connects node N0 in the upper
circle to node Nn in the lower circle.

(2) A radial cable in the upper circle connects node N0 to the centre node N2n, and a
radial cable in the lower circle connects node Nn to the centre node N2n+1.
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Fig. 3. The nodal numbering of two example structures with D5 symmetry.

(3) A vertical cable connects node N0 in the upper circle to node Nn+v in the lower circle.
We restrict 1 ≤ v ≤ n/2 (choosing n/2 ≤ v ≤ n would give essentially the same set
of structures, but in left-handed versions).

The numbering of nodes of two example structures with D5 symmetry, D1
5 and D2

5, is
shown in Fig. 3. Node N0 is connected by a strut to node N5, and by a cable to node N6

for D1
5, and to node N7 for D2

5.

2.2 Symmetric state of self-stress
Because of the high symmetry of the star structures, we only need to consider the

equilibrium of one reference node from each orbit, to find the symmetric state of self-
stress. Thus we consider the equilibrium of one boundary node, and one center node, in
the absence of external forces.

Consider the boundary nodes first. Take one of them, for example node N0 in the upper
circle, as the reference node and let x0 ∈ <3 denote its coordinates in three-dimensional
space. The coordinates of the other two boundary nodes in the lower circle, connected to
the reference node by the strut and vertical cable, respectively, are denoted by xs and xv;
the coordinates of the centre node in the upper circle is denoted by xc.

Since the boundary nodes are in the same orbit, the reference node x0 can be trans-
formed to the boundary nodes xs and xv by the proper 2-fold rotations written in the
form of transformation matrices Rs and Rv:

xs = Rsx0,
xv = Rvx0.

(1)

where Rs and Rv are defined as

Rs =




1 0 0
0 −1 0
0 0 −1


 , Rv =




Cv Sv 0
Sv −Cv 0
0 0 −1


 , (2)

using the notation Cv = cos(2vπ/n) and Sv = sin(2vπ/n). (Note that here we have
effectively chosen a particular handedness for the structure with our choice of a positive
direction for rotation in Rv, and we have chosen that the reference node must be connected
to a strut that intersects the x-axis by our choice of Rs.)
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The coordinates xc of the center node in the upper circle is already known, if the height
H of the structure is given:

xc =




0
0

H/2


 . (3)

Denote the force densities (internal force to length ratios) of the strut, vertical and
radial cables as qs, qv and qr, respectively. The equilibrium of the reference node, in the
absence of external force, is

qs(xs − x0) + qv(xv − x0) + qr(xc − x0) = 0. (4)

From Eq. (2), Eq. (4) can be rewritten as

Ēx0 + qrxc = 0, (5)

where

Ē =

[
Ē1 O
O Ē2

]
= −




qv(1− Cv) + qr −qvSv 0
−qvSv 2qs + qv(Cv + 1) + qr 0

0 0 2qs + 2qv + qr


 ,

(6)
where Ē1 ∈ <2×2 and Ē2 ∈ <1×1. Note that Ē is in fact part of the symmetry-adapted
force density matrix presented later in the paper.

Using Eq. (3), Eq. (4) can be separated into the following two independent equations

Ē1x̄0 = 0 (7)

and
Ē2H/2 + qrH/2 = (−2qs − 2qv − qr)H/2 + qrH/2 = 0, (8)

where the vector x̄0 ∈ <2 denotes the coordinates of the reference node in xy-plane.
Because H 6= 0, Eq. (8) gives

qv = −qs. (9)

In order to have non-trivial coordinates (x̄0 6= 0) in xy-plane, Ē1 should be singular; i.e.,
its determinant should be zero. Hence, we have

q2
r + q2

v(Cv − 1) = 0, (10)

where Eq. (9) has been applied. The force density qr of the radial cable should be positive
that can be solved as

qr = +qv

√
2(1− Cv). (11)

Thus we have found force densities in the members that allow the structure to be in self-
equilibrium — equilibrium of the centre nodes is automatically satisfied. For the reference
node, the coordinate x̄0 in the xy-plane lies in the null-space of Ē1 and the coordinate in
z-direction is H/2, giving

x0 =
R

R0

r +
H

2
h =

R

R0




Cv − 1 +
√

2− 2Cv

Sv

0


 +

H

2




0
0
1


 , (12)
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Fig. 4. Divisible dihedral star tensegrity structure D2
8. Any of the two substructures D1

4 can
rotate about the z-axis without mechanical influence on the other.

where R0(= 2
√

(1− Cv)(1− Sv/2)) is the norm of r. Thus, R is the arbitrary radius of

the circles containing the boundary nodes, and the complexity of Eq. (12) arises from our
choice that the strut connected to the reference node should intersect the x-axis.

3. Divisibility

The previous section has found equilibrium configurations for dihedral star tensegrity
structures, but these structures may be stable or unstable. Before stability investigation
in the next section, we present the condition for indivisible structures, since the divisible
structures should have been considered in the simpler substructures with less nodes and
members.

Note that, unlike prismatic tensegrity structures catalogued by Zhang et al. (2008a),
the ‘star’ tensegrity structures are never strictly divisible — all elements of the structure
are connected. Despite this, it is possible for parts of the structure to act independently
of one another of one particular set of relative motions — rotations around the z-axis.
Thus we define a dihedral star tensegrity to be divisible if the members and nodes can be
separated into two or more identical substructures that are only interconnected by being
pinned together at the common centre nodes. Rotation of one substructure about z-axis
has no mechanical influence on other substructures. Hence, the divisible structure has a
finite mechanism, and therefore cannot be stable. As an example, the structure D2

8 shown
in Fig. 4(a) is divisible — it can be separated into two identical structures D1

4 as shown
in Figs. 4(b) and (c). The struts and vertical cables in each substructure connect one to
another to form a closed circuit, so that the substructures are indivisible.

From the labels of nodes and definition of connectivities of struts and vertical cables,
node Ni in the upper circle is connected to node Nn+i+v by a vertical cable; node Nn+i+v is
connected to node Ni+v by a strut; node Ni+v is connected to Nn+i+2v by a vertical cable,
and so on. Eventually, we must return back to the starting node Ni. If we stop when the
linkage returns back to the starting node Ni for the first time, the boundary nodes in the
upper circle in the linkage can be listed as follows

Ni → Ni+v → Ni+2v → · · · → Ni+jv−mn(≡ Ni). (13)

The numbers j and m indicate the number of boundary nodes in the upper circle that
have been visited, and the number of circuits around the z-axis, respectively.
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To return to the starting node Ni, we have i + jv −mn = i, and hence

jv = mn. (14)

We must have integer solution for j and m, which we can write as j = n/D, m = v/D,
where D is any common divisor of n and v. If the structure is indivisible, we should have
visited all n boundary nodes in the upper circle. Thus, the minimum solution for j for an
indivisible structure is j = n, from which we must have that D can only be 1. In summary,
the necessary and sufficient indivisibility condition for a star structure is that v and n
have no common divisor except 1.

4. Stability
This section will investigate the stability of the star tensegrity structures. We will

introduce the ideas of super stability and prestress stability, and show which structures
are super stable, and which are prestress stable for varying ratios of R/H.

4.1 Symmetry-adapted force density matrix
A super stable star tensegrity structure is guaranteed to be stable for any arbitrary R

and H, and any level of prestress. The force density matrix (sometimes called the ‘small’
stress matrix, for example in Guest (2006)) is critical to super stability of a tensegrity
structure.

The force density matrix E ∈ <(2n+2)×(2n+2) is a symmetric matrix, defined using the
force densities: Let I denote the set of members connected to free node i, the (i, j)-
component E(i,j) of E is given as

E(i,j) =





∑
k∈I

qk for i = j,

−qk if nodes i and j are connected by member k,
0 if nodes i and j are not connected,

(15)

where qk denotes the force density of member k.
Connelly (1982) and Zhang and Ohsaki (2006) presented the equivalent sufficient con-

ditions for the super stability of a tensegrity structure:

(1) The force density matrix has the minimum rank deficiency of four for a three-
dimensional structure;

(2) The force density matrix is positive semi-definite;
(3) The member directions do not lie on a conic at infinity (Connelly, 1982), or equiva-

lently, the geometry matrix is full-rank (Zhang and Ohsaki, 2006).

Note that the last two are also the necessary conditions for super stable structures.
Since the third condition is always satisfied for indivisible star structures, we need only to
consider the first two conditions, both of which are in terms of the force density matrix.

We can simplify the calculation of the stability properties of the structure by considering
the force density matrix written, using symmetry-adapted coordinates, in a way that
closely mirrors the treatment in Zhang et al. (2008a,b). The structure of this matrix can
be determined considering the permutation representation of the nodes, written in terms
of irreducible representations. For a dihedral group Dn, the irreducible representations
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are denoted as A1, A2, B1, B2, Ek (k = {1, . . . , p}), where B1 and B2 only exist for n even
and

p =

{
(n− 1)/2, for n odd,
(n− 2)/2, for n even.

(16)

A1, A2, B1, B2 are one-dimensional and Ek are two-dimensional representations. Tables
of irreducible representations will be found in Altmann and Heizig (1994), for instance.

The permutation representation of the nodes can be calculated separately for the two
orbits of nodes. The boundary nodes form a regular orbit, and hence the representa-
tion is the regular representation, consisting of d copies of each d-dimensional irreducible
representation:

Γσ(N b) = A1 + A2 + (B1 + B2+)
p∑

k=1

2Ek. (17)

The two centre nodes are left in places by any rotation about the z-axis, but swapped by
any dihedral (2-fold) rotation, and hence the representation is

Γσ(N c) = A1 + A2. (18)

Representation of all nodes Γσ(N) can then be summarised as

Γσ(N) = Γσ(N b) + Γσ(N b) = 2A1 + 2A2 + (B1 + B2) +
p∑

k=1

2Ek, (19)

which characterises the structure of the symmetry-adapted force density matrix Ẽ. As
described in Zhang et al. (2008b), Ẽ can be written as

Ẽ
2n×2n

=




ẼA1

2×2

ẼA2

2×2

(ẼB1

1×1
) O

(ẼB2

1×1
)

ẼE1

2×2

ẼE1

2×2

O
. . .

ẼEp

2×2

ẼEp

2×2




, (20)

which is simply written as Ẽ = ẼA1 ⊕ ẼA2 ⊕ (ẼB1 ⊕ ẼB2)⊕ ẼE1 ⊕ . . .⊕ ẼEp .
All of the results can be directly found according to Zhang et al. (2008b), except the

A1 and A2 blocks where the centre nodes contribute. Those blocks are given as

ẼA1 ⊕ ẼA2 = TET>, (21)

where the transformation matrix T(∈ <4×(2n+2)) is constructed from the characters of A1

and A2 representations:
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T =




TA1
b /

√
2n

TA1
c /

√
2

TA2
b /

√
2n

TA2
c /

√
2




, where




TA1
b

TA1
c

TA2
b

TA2
c




=




1 1 . . . 1 1 1 . . . 1 0 0
0 0 . . . 0 0 0 . . . 0 1 1
1 1 . . . 1 −1 −1 . . . −1 0 0
0 0 . . . 0 0 0 . . . 0 1 −1


 , (22)

and TA1
b , TA2

b , TA1
c , TA2

c (∈ <2n+2) are row vectors. The first n columns in T correspond
to the n ‘top’ boundary nodes, the next n columns correspond to n ‘bottom’ boundary
nodes, and the last two columns correspond to the two centre nodes.

The blocks of the symmetry-adapted force density matrix Ẽ are summarised as follows.

ẼA1 =

[
qr −√nqr

−√nqr nqr

]
,

ẼA2 =

[
2(qv + qs) + qr −√nqr

−√nqr nqr

]
=

[
qr −√nqr

−√nqr nqr

]
,

ẼB1 = qr − qs + (−1)v+1qv = qr + qv + (−1)v+1qv,

ẼB2 = qr + qs + (−1)vqv = qr − qv + (−1)vqv,

ẼEk =

[
(qr + qv + qs)− qvCkv − qs −qvSkv

−qvSkv (qr + qv + qs)− qvCkv + qs

]

=

[
qr + qv(1− Ckv) −qvSkv

−qvSkv qr − qv(1− Ckv)

]
, (23)

where the relation qv = −qs from Eq. (9) has been used.

4.2 Super stability
When the conditions on equilibrium given in Section 2 are satisfied, the symmetry-

adapted force density matrix will have a rank deficiency of four; each of the A1, A2

and (two) E1 blocks are rank-deficient by one. To ensure a super stable structure, these
blocks must be positive semi-definite and the other blocks must be positive definite. This
subsection investigates when this is the case.

ẼA1 and ẼA2 have eigenvalues

λA1
1 = λA2

1 = 0 and λA1
2 = λA2

2 = (n + 1)qr > 0, (24)

and hence are positive semi-definite.
B1 and B2 exist only for n even, and v is odd for an indivisible structure. Hence,

substituting Eqs. (9) and (11) to Eq. (23), we have

λB1 = ẼB1 = qr − qs + (−1)v+1qv = qr − qs + qv = qv

(
2 +

√
2(1− Cv)

)
, (25)
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Fig. 5. Cosine corresponding to the connectivity of vertical cables v (n = 9).

and

λB2 = ẼB2 = qr + qs + (−1)vqv = qr + qs − qv = qv

(
−2 +

√
2(1− Cv)

)
. (26)

Thus ẼB1 > 0, and is positive definite, while ẼB2 ≤ 0. In fact the equality only holds if
v = n/2, and hence for an indivisible structure (v 6= n/2), ẼB2 < 0, and is thus negative
definite. Therefore, for n even, dihedral star tensegrity structures are never super stable.

We will now consider indivisible structures with n odd to find the super stability con-
dition. The two eigenvalues of ẼEk are

1
qv

λEk
1 =

√
2(1− Cv) +

√
2(1− Ckv) > 0,

1
qv

λEk
2 =

√
2(1− Cv)−

√
2(1− Ckv).

(27)

For k = 1, we have λE1
2 = 0 as expected for the equilibrium condition. Thus, for n = 3

where k > 1 does not exist, the dihedral star tensegrity structure is super stable.
For n > 4, we must consider ẼEk for k > 1. For a super stable tensegrity, ẼEk for all

1 < k ≤ p = (n − 1)/2 must be positive definite; i.e., λEk
2 must be positive; and hence,

from Eq. (27) we require

Ckv > Cv, for all 1 < k ≤ (n− 1)/2. (28)

Each of Cjv (j ∈ {1, . . . , (n− 1)/2}) takes one of the value in the following list with n
elements {

cos
1

n
2π, cos

2

n
2π, . . . , cos

n

n
2π

}
. (29)

The nine cosine values, four of which duplicate, for the case n = 9 is illustrated in Fig. 5,
where the horizontal and vertical axes respectively denote cosine and sine values of a
specific angle θ.

Note that cos i
n
2π = cos n−i

n
2π; moreover, Cjv 6= cos 2π holds, because v and n have no

common divisor except 1 for an indivisible structure and 1 ≤ j ≤ (n − 1)/2. Thus, the
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list can be condensed as follows with p = (n− 1)/2 elements

{
cos

1

n
2π, cos

2

n
2π, . . . , cos

n− 1

2n
2π

}
, (30)

where

cos
1

n
2π > cos

2

n
2π > . . . > cos

n− 1

2n
2π. (31)

It is apparent that v = (n− 1)/2 = p will lead to Ckv ≥ Cv for 1 < k ≤ p. However, this
is the necessary and sufficient condition only if each of Cjv (j ∈ {1, . . . , (n − 1)/2}) has
one-to-one correspondence to the elements in the condensed list in Eq. (30), as proved in
Lemma 1.

Lemma 1: Each of Cjv (j ∈ {1, . . . , (n− 1)/2}) has one-to-one correspondence with the
elements in the condensed list in Eq. (30), for an indivisible structure with n odd.
Proof.

To prove the lemma, we need only to show that the relation Ck1v 6= Ck2v holds for
k1 6= k2.

The relation Ck1v = Ck2v holds only if

k1v −m1n

n
2π +

k2v −m2n

n
2π = 2π, (32)

where m1 and m2 are the integers satisfying 1 ≤ k1v −m1n ≤ n and 1 ≤ k2v −m2n ≤ n.
Thus we have

(k1 + k2)v = (m1 + m2 + 1)n. (33)

Since v and n have no common divisor except 1 for an indivisible structure, the smallest
possible (integer) solution for k1 and k2 is k1 + k2 = n. However, we have

2 ≤ k1 + k2 ≤ n− 1 < n; (34)

due to 1 ≤ k1 ≤ (n− 1)/2 and 1 ≤ k2 ≤ (n− 1)/2. Therefore, Eq. (33) can not hold, and
hence Ck1v 6= Ck2v holds for k1 6= k2.

As there are in total (n − 1)/2 elements for j (∈ {1, . . . , (n − 1)/2}), and (n − 1)/2
different values in Eq. (30), every cosine value in the list has been taken, but only once,
by Cjv for an indivisible structure with n odd, which proves the lemma.

Some examples are given in Fig. 6 for different v for the case n = 9. The solid lines links
the points showing cosine values for Cjv (j ∈ {1, . . . , 4}). The four points take different
cosine values for indivisible structures (v = 1, 2, 4), and duplicate for the divisible structure
(v = 3).

From Lemma 1, we must have the following relation from Eq. (30) to ensure that the
relation in Eq. (28) always holds

v = p =
n− 1

2
. (35)

In other words, a dihedral star tensegrity structure is super stable if and only if it has
odd number of struts (n odd), and the struts are as close to each other as possible (v =
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Fig. 6. Connectivity of boundary nodes in one circle through struts and vertical cables (n = 9).
Every cosine value is taken only once, if the structure is indivisible, see the cases (a), (b) and
(d). For the divisible case in (c), only part of the cosine values have been taken.

(n − 1)/2). This is the necessary and sufficient condition for super stability of dihedral
star tensegrity structures.

4.3 Prestress Stability

We have found the super stability condition for dihedral star tensegrity structures in the
previous section. We show in this section through numerical calculation that some other
structures, that are not super stable, can still be prestress stable if certain conditions are
satisfied — a treatment that follows Zhang et al. (2008a).

A prestress stable structure has a positive definite reduced geometrical stiffness matrix

Q = MKGMT, (36)

where columns of M are the infinitesimal mechanisms of the structure, and KG is the
geometrical stiffness matrix defined by the tensor product of a 3 × 3 identity matrix I3

12



0 1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Height/Radius

M
in

im
um

 E
ig

en
va

lu
e

Fig. 7. Prestress stability of the dihedral star tensegrity structure D1
7. When the height/radius

ratio is larger than 1.02, it is prestress stable with the positive minimum eigenvalue of the reduced
stiffness matrix.
Table 1
Stability of dihedral star tensegrity structures Dv

n, for 3 ≤ n ≤ 10. ‘S’ denotes super stable; if
the structure is prestress stable only when the height/radius ratio is larger than r, then this is
indicated as ‘≥ r’; and if the structure is divisible, its substructures are given.

v\n 3 4 5 6 7 8 9 10
1 S ≥ 0.46 ≥ 0.65 ≥ 0.87 ≥ 1.02 ≥ 1.18 ≥ 1.30 ≥ 1.43
2 2D1

2 S 2D1
3 ≥ 0.32 2D1

4 ≥ 0.57 2D1
5

3 3D1
2 S ≥ 0.11 3D1

3 ≥ 0.29
4 4D1

2 S 2D2
5

5 5D1
2

and the force density matrix, KG = I3⊗E (Guest, 2006). The structure is prestress stable
if and only if the minimum eigenvalue λQ of Q is positive.

As an example, Figs. 7, 8 and 9 plot the values of λQ against the ratios of height to
radius (H/R) for the star tensegrity structures with dihedral symmetry D7. The force
density matrix is calculated relative to the force density of vertical cables, or by assigning
qv = 1 alternatively without losing generality. The structure D3

7 is super stable and is
thus always prestress stable; the structures D1

7 and D2
7 are not super stable, but it can

be observed from Figs. 7 and 8 that they are prestress stable if the height/radius ratio is
large enough.

These figures have the same appearance: the minimum eigenvalue of the reduced stiff-
ness matrix increases sharply firstly, and then decreases with the increasing height/radius
ratios. Finally, the minimum eigenvalue converges gradually to a positive value, such that
the structure is prestress stable.

Table 1 shows the stability of star structures with 3 ≤ n ≤ 10. It can be seen that every
indivisible structure in this range can be prestress stable.

5. Discussion
This paper has presented the necessary and sufficient condition for super stability of
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Fig. 8. Prestress stability of the dihedral star tensegrity structure D2
7. When the height/radius

ratio is larger than 0.32, it is prestress stable with the positive minimum eigenvalue of the reduced
stiffness matrix.
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Fig. 9. Prestress stability of the dihedral star tensegrity structure D3
7. From the super stability

condition for star structures, this structure is super stable, and hence, it is always prestress
stable irrespective of the height/radius ratio.

dihedral star tensegrity structures — the structures are super stable if and only if they
have odd number of struts, and the struts are as close to each other as possible. Further-
more, we conjecture that all indivisible dihedral star tensegrity are prestress stable if the
height/radius ratio is large enough: numerical calculations have shown this to be true for
all 3 ≤ n ≤ 100, although only simpler cases 3 ≤ n ≤ 1000 have been presented.

If the centre nodes of a star structure are connected by an additional ‘centre’ member,
see for example the structure shown in Fig. 10, the new structure is also of dihedral sym-
metry. Numerical calculations show that the super stability condition and the conjectures
on prestress stability for the structures without centre members also apply to these struc-
tures. However, any proof of their stability properties is complicated by the existence of
an additional parameter, the distance between the centre nodes.
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Fig. 10. Dihedral star tensegrity structure with centre member. It has the same connectivity as
the structure D1

4, except for the additional centre member connecting the two centre nodes. The
parameter h denotes the distance between a center node to the closest centre of circle containing
boundary nodes. The centre member is a strut when h > 0, a cable when h < 0, and there exists
no prestress in the member when h = 0. This structure is prestress stable but not super stable
as confirmed by numerical calculation.
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