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SUMMARY 

Symmetry can simplify the form-finding process for tensegrity structures; and this paper will describe one 
simplification technique. Our method is based on the commonly used force density method, but the calculations 
are done using a symmetry-adapted coordinate system. The standard force-density method assumes a known 
connectivity for the structure.  A tension coefficient (tension divided by length) must then be found for every 
member so that an equilibrium solution is possible.  Finding the nodal coordinates is straightforward once a 
suitable set of tension coefficient is found; but finding suitable tension coefficients may be non-trivial.  In this 
paper we simplify the correct choice of tension coefficients by the use of symmetry – in addition to the 
connectivity of the structure, we assume that the structure has certain symmetry properties, greatly reducing the 
difficulty of finding possible configurations. The paper will show simple examples of the method where a simple 
analytical solution gives all possible symmetric tensegrities with a given connectivity. 
 
Keywords:  Tensegrity structures, form-finding, stress matrix, group representation theory, symmetry-adapted 
coordinate system. 
 
1. INTRODUCTION 

Tensegrity structures are rigidized by self-stress. 
The key step in design of these structures is form-
finding, the determination of a self-stressed 
equilibrium configuration. Here, a simple technique 
for tensegrity form-finding is described based on 
the commonly used force density method, but the 
calculations are done using a symmetry-adapted 
coordinate system.   

The standard force-density method, presented in 
[1], assumes a known connectivity for the structure.  
A tension coefficient (tension divided by length) 
must then be found for every member so that an 
equilibrium solution is possible. Finding the nodal 
coordinates is straightforward once a suitable set of 
tension coefficient is found; but finding suitable 
tension coefficients may be non-trivial. We will 
show that using symmetry can help. 

2. EQUILIBRIUM AND STABILITY OF 
TENSEGRITY STRUCTURES 

In the force-density method, the equilibrium of the 
structure is written using a stress matrix, S (often 
known as the force density matrix), which is 
defined as follows. Consider two nodes i and j, 
possibly connected by a member ij which carries a 
tension coefficient .îjt  The coefficients of the stress 
matrix are 
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If the unknown nodal coordinates are written as 
three vectors, x, y and z, and applied nodal forces in 
the x, y and z directions are written as px, py, and pz, 
then unloaded equilibrium configurations are 
solutions of the equations: 
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Figure 1.  Example tensegrity structure with D3 symmetry. (a) Isometric view, showing the node and element 
numbering scheme used. Tension members are shown by thin lines, compression members by thick lines. (b) Plan view, 
showing the top triangle by dashed lines, bottom triangle by solid lines, and the location of three C2 rotation axes, a, b, 
c, each of which lies at half height in the structure. 
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In order for a three-dimensional structure to exist, 
the equilibrium equations (Eq. 2) must have three 
independent solutions, which themselves must be 
independent of the uniform vector [1, 1, ... 1]T, 
which will always be in the nullspace of any 
properly defined stress matrix. Thus the tension 
coefficients in the members must be chosen such 
that S has a nullity of 4, i.e. it is rank-deficient by 
4. In addition, to guarantee that the structure is 
stable, we require S to be positive semi-definite. 

In this paper we simplify the correct choice of 
tension coefficients by the use of symmetry.  In 
addition to the connectivity of the structure, we 
assume that the structure has certain symmetry 
properties. We then write the stress matrix, S 

using a symmetry-adapted coordinate system that 
is defined by the irreducible representations of 
the symmetry group to which the structure 
belongs: the resultant stress matrix S~  is similar to 
S, but has a block-diagonal form. The nullity of 
the whole matrix is now simply the sum of nullity 
of each the sub-blocks of S~ , and hence finding 
the required nullity of 4 is simplified. 

3. SIMPLEX TENSEGRITY  

Consider the example tensegrity shown in Fig. 1: 
we will assume that it has a totally symmetric 
state of self-stress where the tension coefficients 
are given by dT̂  for the diagonal struts (members 
10, 11, and 12), hT̂  for the horizontal cables 
(members 1–6), and vT̂  for the vertical cables 
(members 7, 8, and 9). The stress matrix (defined 
in Eq. 1) is then given by Eq. 3. 
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Note that the stress matrix does not depend on the 
actual configuration of the structure. 

In the Schoenflies notation [2] the structure has D3 
symmetry – it is transformed into an equivalent 
configuration by six symmetry operations: the 
identity, E, rotation by 120° (C3) or rotation by 
240° ( 2

3C ) about the vertical axis; twofold 
rotation about the three axes a ( aC2 ), b ( bC2 ), and 
c ( cC2 ). The irreducible representations of a 
symmetry group [3] shown in Table 1, provide the 
means to find a symmetry adapted coordinate 
system, as described in [4]. Applying that method 
here gives an orthogonal transformation matrix V, 
so that  ,pV  p  x,V  x x

T
x

T == ~~ where 
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V defines four symmetry subspaces. A1 is where 
loads, or coordinates, are totally symmetric – 
unchanged by every symmetry operation; for A2, 
loads and coordinates are preserved by E, C3 
and 2

3C , but reversed by aC2 , bC2  and cC2 . E is a 
two-dimensional representation, whose symmetry 
subspace gathers anything not in A1 or A2: it splits 
into E(1), quantities preserved by aC2 , and E(2), 
quantities reversed by aC2 . The symmetry adapted 

S~  where yx p  y S ,p  x S ~~~~~~
==  and ,~~~

zp  z S =  can be 
written as 

SVV  S T=
~                                                           (5) 

which gives, the block form shown in Eq. (6).

 

Table 1: Irreducible representations of symmetry group D3 
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Eq. 6 shows that the block-diagonalized stress 
matrix, S~  consists of four independent sub-matrix 
blocks, the A1, A2, E(1), and E(2) blocks – note 
that E(1) and E(2) are identical, which is a 
consequence of the symmetry. We will now 
consider each of these blocks separately. 

A1 block    ] 0 [  S 1A =
~                                         (7) 

The value of first (1× 1) matrix, 1AS~ must be zero 
(nullity = 1) for a properly configured stress 
matrix, because the sum of any row (or column) is 
zero, by definition. 

A2 block  ]  [  S 2A
dv TT ˆ2ˆ2~

+=                              (8) 

When 

             dv TT ˆˆ −=                                             (9)  

the second block gives nullity 1. 

E blocks 
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In order to have a nullity of greater than zero for 
each E(1) and E(2) blocks, the determinant of 

1ES~ and 2ES~ should be zero. 
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Figure 2.  Example tensegrity structure with:  (a) 3
^^

+=  hv TT and (b) 3
^^

−=  hv TT .
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Figure 3.  Tensegrity structure with T symmetry. The outer net of members shown by thin lines (blue and yellow) are 
cables in tension and the inner bars shown by thick lines (green) are struts in compression. 

 

0)ˆ23()ˆ22ˆˆ3( 22  =−++ vdvh TTTT                (11)  

To obtain a total nullity of 4, we need to satisfy 
equations (9) and (11), with non-zero tension 
coefficients. The solutions are 

3ˆˆ
1ˆˆ

±=

−=

  
  

hv

dv

TT
TT

                                                  (12) 

These solutions result in S having a nullity of 4, 
and also being positive definite. There is choice in 
the value of hv TT ˆˆ ; however, if we additionally 
require both horizontal cables and vertical cables 
to be in tension (Fig. 2a), with vT̂  and hT̂  positive, 

then we must choose 3ˆˆ +=hv TT . ( 3ˆˆ −=hv TT  
is also a valid structural configuration, but with 
the role of diagonal struts and vertical cables 
reversed (Fig. 2b).) 

1ˆˆ −=dv TT  and 3ˆˆ +=hv TT determine the stress 
matrix for the structure (Eq. 3) apart from a single 

parameter representing the overall magnitude of 
the state of self-stress. This parameter does not 
affect the nullspace of S, and hence it is possible 
to find stable equilibrium configurations of the 
system from the possible solutions of Eq. 2. 

4. T GROUP TENSEGRITY STRUCTURES  

As a second example, the structure shown in    
Fig. 3 will be analysed. It is a structure with point 
group symmetry T, the symmetries of rotations, 
but not reflections, of a tetrahedron. Let the 
tension coefficients due to the prestress be 
denoted by tT̂ , dT̂  and sT̂ , for the cables in the 
triangles, the cables connecting the triangles, and 
the struts, respectively. The stress matrix, S can be 
set up in terms of only these three tension 
coefficients. 

⎥⎦
⎤
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SS  S                                                  (13) 

where, 
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The symmetry group T has three irreducible 
representations, the one-dimensional A, the two-
dimensional E, and the three-dimensional T. As 
with the first example, it is possible to find a 
symmetry transformation matrix to give the 
block-diagonalized stress matrix S~ , which has the 
structure 
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Figure 4.  Solutions of Eq. 17, 0|~    S | 1T = . The solutions lie on three lines, which split the plot into 4 regions. Requiring S, 

and hence 1TS~ to be positive semi-definite implies that we are interested in the solution between regions (1) and (2). 
Additionally requiring td TT ˆˆ  positive, and  ts TT ˆˆ  negative, gives solutions marked by crosses. 

 

S~  is a (12× 12) matrix; AS~  is (1× 1); 1ES~ and 
2ES~   are (2× 2); 1TS~ , 2TS~ , and 3TS~ are (3× 3). 

AS~  is guaranteed to have a nullity of 1 for any 
properly constructed stress matrix. 1TS~ , 2TS~ , and 

3TS~  are guaranteed to be similar to one another, 
and hence if the nullity of ,1~

=1TS  then the total 
nullity of S will be at least the required 4. Thus, 
we require 

0|~    S | 1T =                                                        (15) 

For convenience, 1TS~ can be written as 
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The overall magnitude of stress is not important, 
so we can write Eq. 15 as  
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Figure 5.  Possible configurations of Tensegrity structures with T symmetry.  

 

The solutions to Eq. 17 are plotted in Fig. 4. 
Requiring S to be positive semi-definite, with 
cables carrying tension and struts compression 
gives a single line of possible solutions. Assuming 
suitable values on this line, say td TT ˆˆ = 2.0 and 

ts TT ˆˆ = −0.759, gives a positive semi-definite 
stress matrix with the required nullity 4. The 
nullspace of this stress matrix dictates possible 
coordinates for this structure, of which one set 
gives the tensegrity structure shown in Fig. 5(a).  
This is not the only possible configuration, but 
any other configuration must be a stretched and 
rotated version of the structure shown. An 
alternative design for td TT ˆˆ = 3.0 and ts TT ˆˆ = 
−0.836, gives the tensegrity structure shown in 
Fig. 5(b).  

5. CONCLUSION 

In this paper, it is shown using the stress matrix 
that for a three-dimensional structure to exist, the 
stress matrix must have nullity of four. The 
nullspace of the stress matrix then gives the 
configuration of the tensegrity. Using a symmetry 
adapted coordinate system makes it easy to check 
the right nullity. Furthermore, it also helps to find 
a set of tension coefficients that achieve 
equilibrium configurations of tensegrity structures 

which are prestress stable and hence greatly 
reduces the difficulty of finding possible 
configurations. 
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