
Minimizing the Self-weight Deflection of Tensegrity Structures    
 

Pandia Raj RAMAR 
Research Associate  
Imperial College London 
London, UK 
pramar@imperial.ac.uk 
 
Pandia Raj Ramar received his PhD in 
Structural Engineering from the 
University of Cambridge. His research 
interests include structural mechanics 
and tensegrity structures.  

 
 

 

 Simon D. GUEST 
Reader in Structural 
Mechanics 
Cambridge University 
Cambridge, UK 
sdg@cam.ac.uk 
 
Simon Guest's research 
interests lie at the border 
between structural mechanics 
and mechanisms analysis, and 
include morphing, deployable 
and tensegrity structures. 

 
 

 
Summary 
In this paper, we consider optimizing the design of kinematically indeterminate tensegrity 
structures. These tensegrity structures will have modes of deformation where the stiffness will scale 
linearly with a typical level of tension carried by the structure. These modes tend to be the softest 
modes of deformation, and can lead to significant deformations due to self-weight: this tends to be 
most noticeable for highly symmetric structures, where, for instance, significant oblation may occur 
if the structure is resting on a flat surface. We will explore how these deformations can be 
optimized through material choice. We will also consider optimal choices where, for aesthetic 
reasons, the compression members are slender.  
Keywords: kinematically indeterminate tensegrity structures, optimization of tensegrity structures, self-
weight deflections. 

1. Introduction 
We were inspired to write this paper after playing a very minor advisory role in the design of the 
tensegrity structure shown in Fig.1. A concern at the design stage was that the self-weight 
deflection of the structure would detract from the aesthetic appeal of the highly symmetric structure.  
After seeing the completed structure, we decided to investigate more carefully the factors that 
would minimize the self-weight deflection of this type of structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: A sculptural tensegrity designed and built by D. Burnett and J. Wythe. The struts are of Aluminium, 
and have a length of 2500mm, and the cables are of steel. 
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The ‘ideal’ version of the tensegrity shown in Fig.1 is shown in Fig.2. This structure has the 
rotational symmetries of a regular icosahedron, which is isomorphic to the alternating group on 5 
symbols, 𝐴5. It may be found in Connelly’s online catalogue of simple symmetric tensegrity 
structures (Connelly and Back, 1998) at http://mathlab.cit.cornell.edu/visualization/tenseg/ as 
Example 6.1 of Conjugacy Class 6 of Group 𝐴5. The structure consists of three orbits of structural 
members, where the members of each orbit are equivalent to each other under a symmetry 
operation.  In total there are 90 cables and 30 struts connecting 60 nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: The ‘ideal’ form of the tensegrity. The structure has the rotational symmetries of a regular 
icosahedron.  It consists of one orbit of struts (coloured brown), and two orbits of cables (coloured grey and 
black).  One orbit of cables form pentagons, while the other connects these pentagons together; the cables 
have the same graph as the edges of a truncated dodecahedron. 
Using the symmetry methods described by Ramar and Guest (2006) and Ramar (2009), it is 
possible to show that when the structure is prestressed, it must have the same tension coefficient 
(tension/length) in members of both orbits of cables, and the ratio of the tension coefficient in the 
cables to that in the struts is 2.6182:−1.  If we choose to have all cables the same length and struts 
of length 2500 mm, then all cables must have length 892.1 mm.  The tensegrity then has a single 
state of self-stress, s = 1.  Using Calladine’s extended Maxwell’s rule (Calladine, 1978) for a three-
dimensional tensegrity framework composed of 𝑏 = 120 bars and 𝑗 = 60 joints, 

  
𝑏 − 3𝑗 + 6 = 𝑠 −𝑚, (1)  

we find that there are 𝑚 = 55 infinitesimal mechanisms: modes of deformation that, to first order, 
do not require any member to change length. The methods described by Ramar (2009) to generate 
this tensegrity guarantees that each of these modes is given positive stiffness when the structure is 
prestressed. However, Guest (2011) showed that for these kinematically indeterminate tensegrity 
structures, made from materials with a small yield strain (e.g. metals with a yield strain of less than 
1%) the modes that correspond to infinitesimal mechanisms will dominate the response of the 
structure to loading, as they have a far smaller stiffness than any other modes of deformation. Guest 
(2011) also showed that these modes have stiffness that is proportional to the tension coefficient 
carried by the members, and we will make use of this for our simple model in Section 2. 
The layout of the paper is as follows. Section 2 describes a simple model to capture the important 
parameters affecting the self-weight deflection of tensegrity structures. Section 3 provides a 
computational model to find the self-weight deflection of these structures, and shows how the 
choice of materials and sections influences the optimal design for the self-weight deflection. 
Section 4 concludes the present work. 
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2. A Simple Model 
In this section we will generate a simple model that will attempt to capture the important parameters 
in calculating the self-weight deflection of a prestressed kinematically indeterminate tensegrity 
structure. We assume that the basic design of the tensegrity is fixed, and hence the ratio of the 
tension in the cables and compression in the struts is fixed. We make an initial assumption that the 
weight, 𝑊, of the structure is dominated by the weight of the struts; that is, we are neglecting the 
weight of cables and any fittings at the nodes. In fact we will see that this is a good assumption as 
long as the struts are slender. Consider that the struts have length 𝑙, cross sectional area 𝐴, and are 
made of a material with density 𝜌. Then, with acceleration due to gravity 𝑔, we can write 

 
 

𝑊 ∝ 𝑔𝜌𝑙𝐴 
 

(2)  

Further, we assume that behaviour of the structure is dominated by the modes that are infinitesimal 
mechanisms, which Guest (2011) showed to have stiffness 𝑆 proportional to the tension coefficient 
in the members.  If the level of prestress is such that the cables carry a tension 𝑡, then we can write 

 

 

𝑆 ∝
𝑡
𝑙
 

 
(3)  

Thus, we can calculate the deflection 𝑑 = 𝑊 𝑆⁄ , 

 

 

𝑑 ∝
𝜌𝑔𝑙2𝐴
𝑡

 
 

(4)  

The simple conclusion from this is that, for a given model, it is always possible to decrease the self-
weight deflection by simply increasing the level of prestress. However, this will ultimately be 
limited, either by yielding of the cables or struts, or buckling of the struts.  Here, we will assume 
that the level of tension is limited by Euler buckling of the struts.  If the struts have a radius of 
gyration 𝑟𝑔 (and hence a second moment of area 𝐴𝑟𝑔2), and are made of material with a Young 
Modulus 𝐸, the Euler buckling load is 𝜋2𝐸𝐼 𝑙2⁄ .  The cable tension 𝑡 must be proportional to this, 
and so 

 

 

𝑡 ∝
𝐸𝐴𝑟𝑔2

𝑙2
 

 

(5)  

Substituting this back into Eq.4 gives 

 
 

𝑑 ∝
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𝐸𝑟𝑔2
 (6)  

 
Which we can write in non-dimensional form as 
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(7)  

Thus, in order to reduce the self-weight deflection for a structure with a given size 𝑙, we have to: (1) 
choose a material that maximises the ratio (𝐸 𝜌⁄ ); and (2) decrease the slenderness �𝑙 𝑟𝑔⁄ �.  



2.1 Material optimisation 
Fig.3 shows an Ashby bubble chart comparing Young’s Modulus 𝐸 and Density 𝜌 for different 
materials.  In order to maximise the ratio (𝐸 𝜌⁄ ) we are looking for materials towards the top-left 
corner of the plot.  Thus we see that steel and aluminium are likely to have a similar performance in 
this application (as would bamboo), whereas carbon fibre should give reduced self-weight 
deflection.  Interestingly, the plot suggests that technical ceramics might prove to be an optimal 
material choice for the struts, but we have not explored that here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3:  An Ashby bubble chart comparing Young’s Modulus 𝐸 and Density 𝜌 for different materials. Data 
from Cambridge Engineering Selector software, 2011, courtesy of Granta Design Ltd, Cambridge UK 
 

2.2 Strut optimisation 
It is interesting to note that Eq.7 doesn’t depend on the area of the strut, simply on its radius of 
gyration. Assuming that the struts have a circular cross-section with diameter 𝐷0, then the radius of 
gyration will lie in a range between 𝑟𝑔 = 𝐷0 4⁄  for a solid cross-section and 𝑟𝑔 = 𝐷0 2√2⁄  for a 
thin-walled cross-section, with the thin-walled section giving (unsurprisingly) a smaller self-weight 
deflection for a given 𝐷0. Although Eq.7 would suggest that increasing the diameter 𝐷0 of the struts 
will always decrease the self-weight deflection, there are limits to this. The physical limit is that, at 
some point, the struts will yield rather than buckle; but in practice their will be an aesthetic limit 
well before this point, where the struts are no longer slender, as, for example, we will see later in  
Fig.4 (b). We will return to the aesthetic trade-off in the design of these structures in Section 3. 

3. A Computational Model 
To compare the self-weight deflection of tensegrity structures in more detail, we made use of 
simple linear computational model to calculate deflections for different materials and different 
levels of stress.  We used the tangent stiffness matrix formulation to understand the mechanics of 
the tensegrity structures. Guest (2006) developed a novel derivation of the tangent stiffness matrix 



that makes clear the role that a stress matrix plays in the stiffness of a self-stressed framework. The 
total tangent stiffness 𝐊 can be written as 

 𝐊 =  𝐀𝐆�𝐀T +  𝐒 (8)  
where 𝐀 is an equilibrium matrix, which depends on direction cosines of the members, 𝐆� is a 
diagonal matrix of modified axial stiffness, and 𝐒 is a large stress matrix, which depends on the 
tension coefficients. We assume that five nodes forming one pentagon are attached to the ground, 
and the weight of the members is then applied as a loading at the other nodes. 
 

Table 1: Material Properties 
 High Yield Strength Steel Aluminium Alloy Carbon Fibre 
Yield Stress, 𝑌 (N/mm2) 1470 400 900 
Young’s Modulus, 𝐸 (N/mm2) 2.0 x 105 0.7 x 105 0.95 x 105 
Specific Weight, 𝜌𝑔 (N/mm3) 78.50 x 10-6 27.0 x 10-6 16.0 x 10-6 

 
The cables are designed using high yield strength steel, while for the struts, three different 
materials, shown in Table 1, are considered.  The structure is designed as follows.  First a cable area 
𝐴cable is assumed, and the limiting tension found for avoid yield,  

 𝑡 = 𝑌steel𝐴cable 
 

(9)  

The cable tension coefficient is thus given by �̂�cable =  𝑡/𝑙cable, and, for equilibrium, as described in 
the Introduction, the strut tension coefficient must be �̂�strut =  �̂�cable/−2.6182 and the strut tension 
𝑡strut =  �̂�strut × 𝑙. Note that the strut tension is negative, as it is a compressive. The strut is designed 
to avoid buckling for the compressive force. 

 𝜋2𝐸𝐴𝑟𝑔2

𝑙2
= −𝑡strut (10)  

In Eq.10 the unknown term 𝐴𝑟𝑔2, the second moment of area of the cross section, can be written 
using the cross sectional dimensions of the strut. For a solid circular section of outer diameter 
𝐷𝑜, 𝐴𝑟𝑔2 =  𝜋𝐷04/64. In case of a tubular strut, we choose a limiting wall thickness of 𝐷𝑜/60 to 
avoid local buckling (Gresnigt, 2010), and 𝐴𝑟𝑔2 =  𝜋(𝐷𝑜4 − 𝐷𝑖4)/64,  with 𝐷𝑖 the inner diameter. 
Note that, for simplicity, we do not consider yielding of the strut, nor reduced buckling strength due 
to imperfections – but these matters are will only have a significant effect for stocky struts that are 
unlikely to be used for a tensegrity structure. Once the size of members and level of tension is 
known, the tangent stiffness and the weight can be found, and hence the deflection calculated. 

As an example, consider the two designs of tensegrity shown in Fig.4, both of which have 𝑙 =
2500 mm and solid steel struts.  The structure in Fig.4(a) has cables 4.0 mm in diameter, struts of 
diameter 33.61 mm, and a minimum self-weight deflection with maximum prestress of 83.04 mm. 
An alternate design in Fig.4(b) has cables 20.0 mm in diameter, struts of diameter 75.14 mm giving 
a self-weight deflection 17.62 mm.  There is a fundamental trade-off between minimizing the 
diameter of the struts, and minimizing the self-weight deflection, a point to which we will return in 
the Conclusion.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

        (a)                                                                                                  (b) 
Fig. 4: Self-weight deflections of the example tensegrity structure with solid steel rods supported on a 
horizontal plane: (a) large deflection for slender struts; (b) reduced self-weight deflection with higher 
prestress and stockier struts.  
Figs.5 and 6 show the results for designs with varying cable diameters for different materials and 
cross-sections. This confirms that thin-walled carbon fibre struts give the lowest self-weight 
deflections amongst the materials and cross-sections considered. Fig.5 shows the data in simple 
form, whereas Fig.6 shows the data in the non-dimensional form suggested by the simple model in 
Section 2. Eq.7 suggests that the data should fall onto a single line of slope 2 on the log-log plot, 
and this indeed turns out to be the case for slender struts, with large 𝑙 𝑟𝑔⁄ .  However, for stocky 
struts, particularly those made from carbon fibre, the (neglected) weight of the cables becomes 
significant, and the results deviate from the simple model. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 5: Minimum self-weight deflection for varying strut diameters, for different materials and cross-
sections. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6: Minimum self-weight deflection plotted in a non-dimensional form suggested by Eq.7, for varying 
strut diameters, for different materials and cross-sections.  
As a final example, we have modelled the self-weight deflection of the sculpture described in the 
Introduction. The structure is constructed with 4.0 mm diameter wound steel cables, and aluminium 
alloy tubular struts with outer diameter 63.0 mm, and wall thickness 1.6 mm. A tension of 
1000.0 N is carried by the cables. Using the computational model discussed above, the self-weight 
deflection is found to be 197.52 mm, which is 5.23% of the height of structure. We have not 
attempted to measure this deflection, but the deflected configuration found in the study is compared 
with the real tensegrity structure in Fig.7.   

 
 
 
 
 
 
 
 
 
 
 

       (a)                                                                                                  (b) 
Fig. 7: Self-weight deflection: (a) computational model (b) actual structure.   



4. Conclusion 
We have shown that increasing the prestress in a kinematically indeterminate tensegrity structure 
will decrease the deflection under load, and that the key to reducing self-weight deflections is to 
design the structure so that the prestress can be increased without increasing the weight unduly. In 
particular, choosing a material for the struts that maximises (𝐸 𝜌⁄ ), and using thin-walled members, 
are straightforward steps. Beyond this there is a fundamental aesthetic trade-off between reducing 
the self-weight deflection, and reducing the slenderness of the struts. 

This paper has only considered the design of the struts, but there is also scope for optimising the 
design of the cables. In particular, a lightweight material such as Kevlar might reduce the required 
mass of the cables, if suitably light end-fittings can be designed. 
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