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ABSTRACT

This study deals with pre-stressed shells, which are capabl'morphing” under large deflexions between
very different load-free configurations. Pre-stressingoines plastically curving a flat, thin shell in orthogonal
directions, either in the opposite- or same sense, reguitintwo unique types of behaviour for isotropic shells.
Opposite-sense pre-stressing produces a bistable, ¢idadty curved shell provided the pre-stress levels argéar
enough and similar in size: this effect forms the basis ofi'atflick’-bracelet, and is well-known. On the other
hand, same-sense pre-stressing results in a novel, ngustable shell provided the levels are also sufficientlgéar
but identical: the shell has to be made precisely othervtisemonostable, and is demonstrated here by means of a
thin, helically curved strip. The equilibrium states assted with both effects are quantified theoretically and new
expressions are determined for the requisite pre-stregsde Furthermore, each stability response is revealed in
closed form where it is shown that the neutrally stable caseis only for isotropic materials, otherwise bistability
follows for orthotropic materials, specifically, those whihave a shear modulus different from the isotropic value.
Finally, pre-stressing and initial shape are consideregither and, promisingly, it is predicted that some shells ca
be neutrally stable and bistable simultaneously.

1 Introduction

Figures 1 and 2 show two simply-made, thin metallic shelthwhusual structural properties. First, there Estable
disk with two distinct out-of-plane cylindrical shapes.idtformed by plastically coiling a flat disk around a cylirzhi
former in orthogonal directions but imppositesenses. The coiling process does not have to be exact antkhead be
a different material: bending the disk manually achievesshime end-point and stiff paper card such as a beer-mat can be
used instead. Afterwards, although initially reluctantiedorm, the shell then snaps through between shapes. Sehersl
is aneutrally stablestrip, which can, when carefully positioned, rest in oneafesal helical configurations as shown, each
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being cylindrically coiled about the length-wise axis affstwith a radius approximately equal to the transverseatuire

of the straightened strip. The manufacturing process isribesi by Gueset al. [1], which is similar to the bistable case
except that the original, flat strip is curved plasticallyraj and across itself in treame sens@ a very precise manner. The
neutral behaviour can be felt by twisting the strip alonddtsgth by hand, where an absence of torsional rigidity besom
evident: a long, rectangular section amplifies the heligating but the effect is preserved in shells with other pdanfs but
identically made. Thus, the two responses differ becausieeafesidual stresses left behind after cold-working; ahdtis
remarkable is that they can be very different by simply rewey the direction of plastic coiling. These shells demiatst
simple morphing structures, which can be used to createtafeshape-changing—large deflexion—technologies with
unique load-free, equilibrium configurations.

The aim of this study is to understand the factors goverrtiegperformance of these shells. In relation to the first
case, Kebadzet al. [2] consider a thin strip, stress-free and initially curvectoss its width, which is then plastically
coiled back on itself, to create bistability. Most of thefindy is spent extracting the profile of residual stresse<lkefiind
after pre-stressing: then, assumingraextensibledleformation mode, they confirm the opposite-sense, orthalgurvature
of the second equilibrium shape for the particular presstristribution. On the other hand, Mansfield [3, 4] records a
performance akin to neutral stability for a heated lenticshell, initially free of stresses and flat but subjectedrtifiorm
thermal gradients through its thickness. He shows thathibl sither bends equally in all directions for low gradeot it
becomes highly curved under severe heating about a singevarse direction ifndeterminate

This study is not concerned with the mechanics of the pessing process itself, rather, it assumes for simplicia th
pre-stressing impartsniform residual bending stresses to the shell before any eladticrdation, which must follow for
self-equilibration without applied loads. The analytif@mulation therefore accounts for pre-stress in a simg ut
it generally accounts for in-plane stretching even thougdxiensible deformations are often justified for very thielk.
Such asymptotic behaviour can be observed as the limitisg abcertain solutions, as will be shown. As well as desagbi
the equilibrium shapes of shell, the stability conditioaséach case in Figs. 1 and 2 can be obtained in closed form, and
the responsible physical mechanism can be identified, whalid not be straightforward to do using, for example, adinit
element analysis. Accordingly, these conditions can bepewed to those for the inextensible shell in [2] or can fofynal
confirm the neutral stability in [3, 4].

Each case is detailed in Sections 3 and 4, respectively, sketching the formulation in Section 2, which has been
derived elsewhere by the first author. Even though pracsicells are isotropic, the material shear modulus is gelgeral
specified during solution of the governing equations, aed&ason is connected to a finding by Seffen [5] who shows that
annealedshells of the same material constitution are bistable i theve the right amount of initial out-of-plane curvature.
Specifically, if there is sufficient positive Gaussian ciuva as in cap-like shells, simple isotropic shells arealbist; but
saddle-shaped, stress-free shells with negative Gaussigature are bistable only by increasing the shear modahdthe
corresponding rise in the torsional stiffness of shell hétprestrain, or lock, the deformed shape.

Pre-stressing of initially-flat shells produces equilitoni states whose stability performance is very differerfiéodtffects
of initial shape even though pre-stress and initial shapesinilarly expressed in the governing equations of deftiona
Such behaviour has not been reported and it usefully extéredpreviously known results: the difference is due to the
presence, or absence, of initial Gaussian curvature, ahtbribe final equilibrium shapes. Specifically, it is showatth
bistability under opposite-sense pre-stressing, whitdngits to cause negative Gaussian curvature, is not affegt¢he
value of the shear modulus, whilst same-sense pre-stgesgdiich deforms the shell to a positive Gaussian curvateseilts
in neutral stability for an isotropic value only.

Furthermore, these solutions assume that the shell hasdesgitally pre-stressed in orthogonal directions, agssted
after making several physical samples where, as notechaiigi neutrally stable shells are difficult to make when-pess
levels are not equal due to manufacturing imperfectionse 3émsitivity of performance due thsparatepre-stressing is
therefore considered but a valuable conclusion emergea Wigeshear modulus is permitted to vary, which augments an
earlier conclusion—that neutrally stable behaviour arigely when pre-stress levels are identiaatl when the shell is
isotropic. This is carried out in Section 5.

For completeness, a last exercise is considered in Secfianspherically curved shells, then pre-stressed in theesam
sense. This shows that the originally flat neutrally stahkdiss part of a family of similarly performing shells but wte
additional stable shapes exist, depending on the size dfitied spherical curvature.

Before closing the introduction, there are two final poiotaiake. First, the analysis requires simplifying but juskife
assumptions for the sake of transparency, which are exg@ldm[6] and summarised as follows. The material is linearly
elastic, and the strains remain small although the dispiaoés can be large relative to the thickness of the shell.ifitial
and deformed curvatures are uniform over the bulk of thel gnéhe absence of externally applied loads, and any pralctic
boundary layer of non-uniform deformation near the edgeheflss neglected due to its relatively small thickness, ahhi
is taken to be constant throughout. For further mathematiqaediency, the shell has an elliptical planform with nmajod
minor semi-axes parallel to orthogonal coordinakeandy, respectively. The governing equations, which are algelfima
nature, are carefully treated to reveal, as far as possibletions in closed form. The second point concerns anegatiidy
by Guest and Pellegrino [7] on finding bistable shells in ayeaof materials, which are not pre-stressed or heated, bohwh



are uniform in shape—similar to here. Their analysis is cachget general, but it differs from the present study in sgve
ways. They assume inextensibility from the outset, whigud$eto the assumption that all equilibria must be cylindigca
curved. Accordingly, bistable shapes need to be descrigaghly two parameters—the direction and orientation of the
cylindrical curvature, and this allows the strain energyed in the shell to be determined straightforwardly. Rathan
solve explicitly for equilibria, they show that new shapas be found by graphical inspection of the strain-energgdaape,
and their stability is inferred from the performance of thedl contours. The present study explicitly solves noedimand
coupled governing equations of deformation for new eqrilitn shapes. For large displacements, inextensibilityfed in

the limiting sense, and the shells tend to cylindrical fobusotherwise, the shape is generally captured by two inalbgre
curvatures and a twisting curvature. Of course, some of ttinfgs in [7] can be duplicated if the pre-stress is set to;zer
but the reader is referred to the findings in [5] for a morediommparison of results with Guest and Pellegrino [7].

2 Governing Equations of Defor mation
From Seffen [6], the governing equations of deformatioraioelliptical shell undergoing relatively large displaearts
are

Kx + MKy = Kx0 + VKyo + Kxm + VKyr (), MKx+ Ky = VKxo+ Kyo+ VKxe + Kye (D), (20 +V — H)Kyxy = 20Kxy0 (C). (1)

The left-sidek terms are the dimensionless out-of-plane curvatures ofi¢fiermed shell, where subscriptsandy refer

to ordinary curvatures arxly refers to twisting. On the right side are any initial curvat) denoted by an extra “0” sub-
script, and theesidualcurvatures due to pre-stressing in orthogonal directisgsandkye: again, an overbar denotes a
dimensionless quantity.

As carefully described in [6], pre-stressing results innpament bending of the shell and the corresponding residual
curvatures describe the shape of the shell if it could defoerlywithout constrainti.e. without developing elastic bending
moments. But the shell cannot do so, and deforms elastially, ky andkyy, in order to equilibrate the residual stresses in
the absence of any external loads. Thus, the formulati@rpurates the residual curvatures as an initial condipoeceding
elastic deformation: it also accounts for a twisting press but which is not needed here.

The Poisson ratio ig and the shear modulus relative to the Young’s modulus isqual to(1—v)/2 in the isotropic
case, but otherwise specifyigrectly isotropicbehaviour, which is a special case of orthotropy where tipane Young's
moduli are identical. The change in the dimensionless Gassirvature/g, is contained withinu according to

L=V + @AG =V + @(KxKy — Kiy — KyoKy0 + Kiyp) , @)

whereg@is a factor of material stiffness and geometry given by

_ bt (1-v?)a
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The ratio of minor-to-major semi axes lengthga, is p, the thickness of shell is andR s a characteristic radius of curvature
for making the previous curvatures dimensionless accgritik = KR. Note that whenp >> 1, the shell is very thin, and
inextensibility follows.

Equations 1(a)-(c) and Eqn. 2 are four coupled non-lineaaggns, which are solved fa, Ky, Ky, andp when the
initial shape, material parameters and pre-stress levelspgecified. The stability of all equilibrium solutions faiiis then
assured by the matrix of generalised stiffness being peditefinite. This matrix has the general and specific forms as

02U /0KZ  0°U [OKxKy 0°U /OKxKxy T+ @2 P+ QRykx  —20KyKyy
02U /OKxyOKx 02U /OKxy0Ky  0%U /0K, —2(KxyKy —2@KxyKx 400 — 2000+ 40K,

whereU from [6] is the total dimensionless strain energy storedhendeformed shell.



3 Opposite-Sense Pre-stressing

As shown in Fig. 1, the shell is initially flat and is then pteessed by plastically curving in opposite senses. Thddeve
of pre-stress in both directions are taken to be identicalliis permits a neat closed-form solution; different ptess
levels are treated in Section 5. Identical pre-stressingezavailed by settingys = —kyr = kq, say, in Eqns. 1(a)-(c), where
ki is referred to as a “pre-stress” term henceforth for sinifgliéll other right-side terms equal to zero, and

Kx+ UKy = ki(1—V) (a), MKx+Ky=—ki(1—V) (b), (204V— k=0 (C). (5)

Even though the practical shells are metallic, the relathvear modulugy, is generally retained. Since there is no twist in
practice, it can be assumed tikgy = 0, which satisfies Eqn. 5(c). The symmetry of the first two ¢igna permits another
solution in whichkx = —Ky =K, say, and either of Eqns. 5(a) or (b) presents

Kt —2 B —ky, (6)

after replacingt by v — @k? using Eqn. 2. This is the non-linear governing equation gfogite-sense bending of the shell,
wherek; determineg monotonically, and there is no bistable behaviour. Stiatgls implied by the cubic term iR, which
accounts for a disproportionate increase in the level ofileidurface strains.

Equations 5(a) and (b) are also satisfieduby —1, by inspection. Consequently, they collapse into a siegfgession,
Kx — Ky = (1—Vv)kq, and from the definition oft; kxky = —(1+V)/@. From these two equations, the set of principal
curvatures can be solved uniquely as

— k((1-
KX:%

A+ 1M - k(i-v) _ 41+v) 72
11[1 ﬁkﬁ(l—vﬁ] 1 Ky =———>— lw[l 7@5(1—\;)2} , @)

which are now two equilibrium states, depending on the chaoitinternal signs. The shell can adopt either state but
interestingly, the produckyky, for both does not depend da and remains constant. ¢f assumes its isotropic value of
(1-v)/2, then Eqn. 5(c) is automatically satisfied, aggdoes not have to be zero but it is taken to be so since there is no
observed twist.

The solutions offered by Eqns. 6 and 7 are three valid eqitilib states describingy andky (andkyy), which co-exist
at a single value of pre-stredg,= k;, say. For a different pre-stress, the solutions from eitfi€qn. 6 or Eqn. 7 are stable
when the eigenvalues of the stability matrix in Eqn. 4 ardtwesafter substituting back the solution curvatures facle
mode. In the case of the non-linear initial response, thersiglues of the stability matrix can be verified as

40+ 2¢k%, 1—Vv+3@K?, 14V — @2 (8)

Positive eigenvalues are obtained wikes less than a maximum value ©of equal to,/(1+V) /@, as suggested by the final
eigenvalue above. The valuekifis found by substituting* back into Eqn. 6 and re-arranging, to reveal

= [4(14v)
K=\ v ©)

This critical pre-stress can be obtained informally frore #tarting limit on real curvatures in Eqns. 7, where realesl
persist only whet; > kj. In this case, the formal stability calculation shows thatfinal matrix entry is itself an eigenvalue
whenkyy, = 0 and has a value

40— 2QAg = 40 + 2(1+ V), (10)



sinceAg = —(1+v)/@viapu= —1. This eigenvalue is precisely the dimensionless torsistiftness of thedeformedshell,
0°U/ O}Tfy, which is always positive irrespective of the value of miafeshear modulus provided > 0. Physically, when the
metallic shell in Fig. 1 rests in either equilibrium shapés itorsionally stiff enough to stabilise against any pevations of
a twisting nature. Finally, it is noted that for high levelspoe-stress or when inextensibility prevails, such thaand/org
are large, the asymptotic solutions &g, ky) — (ki[1—V], 0) or, equally valid,(kx, Ky) — (0, —ki[1—V]), which testify
to the orthogonal cylindrical modes reported in Fig. 1.

4 Same-Sense Pre-stressing
Again, the shell is initially flat but pre-stressing is in tek@me sense, to the same degree, and is declared by setting
Kxr = Kyr, equal tok in the governing equations, which become

Kx+ UKy = k2(14V) (a), MKx+Ky=ka(1+V) (b), (2a+V—uKey=0 (C). (11)

Whena is not isotropic in value, theRyy must be zero, to satisfy Eqn. 11(c); however, this may noteecase when
o = (1-v)/2, since the metallic shell in Fig. 2 can be twisted: thesesase treated momentarily.

The symmetry of the first two equations admits a natural Emiuky = Ky, equal tok, whereupon substituting infa,
and then into either of Egns. 11(a) or (b), produces

=, P =
K+1+VK =ko. (12)

Compared to Eqn. 6, this expression also describes theinearbending of the shell but with a different cubic coeéfiti

Equations 11(a) and (b) are also satisfieduby 1, which is an automatic solution of Eqn. 11(c) in the isoitagase:
Kxy # 0 fora = (1—v)/2, butkyy = O for other values ofi. Both of these cases can be treated together by introduining,
the isotropic case, a new axes sétandY, suitably rotated fronx andy aboutz, and aligned to the directions of principal
curvaturekx andky. A Mohr’s circle asserts thatx + Ky = Kx + Ky, (KxKy — Eiy) = KxKy andkyy = 0. Equations 11(a)
and (b) can now be combined to yietgt + Ky = k(1+ V), andkxky = (1—Vv)/@ from settingu = 1 and, wheruo is not
isotropic, the same expressions arise wherein the subsgripndY are interchanged witk andy, respectively, which is
implied in the following solutions. Solving for both prirgal curvatures produces

1+ [1_(pk§(1+v 2 @1+

. 1/2 r
41 v))z} ] <, _ ke+v)

17 [1 L‘”)z] 1/2] , (13)

These are valid equilibrium states whienassumes a value larger than a critical va@ewhere

L 4(1_V)
=\ irve (14)

Note the similarity to Eqn. 9 and, as with opposite-sensespessing, the produatxKy is always a constant irrespective of
the level ofko, whenk; > k3. The stability performance is formally obtained by recamsting the elements of the matrix in
Eqgn. 4 in theX —Y system, by replacingy, Ky andkyy with Kx, Ky andkxy, and settingkxy =0.

Whenk; < k3, itis straightforward to show that the mode described by.B@&ris stable. Wheky, > k3, the least positive
eigenvalue is, again, the final matrix entry in Eqn. 4, of ealu

40— 2QAg = 4a — 2(1—v), (15)

sinceAg= (1—v)/@from u= 1. In the isotropic case, this eigenvalue is always zero badause it is also the deformed
torsional stiffness, this result confirms the twisting melly stable shell in Fig. 2. If the relative shear modulugjisater



than (1-v)/2, the shell is bistable, where the curvatures, now alignegtiginalx andy coordinates, adopt either of the
values in Egn. 13 according to the order of the internal siihe asymptotic values show that the curvatures clearkrday
such that, whetk, becomes large ap >> 1, then(ky, Ky) — (k2[1+ V], 0) or (Kx, Ky) — (0, kzo[1+V]), and the shell is
cylindrically curved about one of two orthogonal directdn the same sense.

5 DisparatePre-stressing
The previous cases assume that the levels of pre-stresdeantical, irrespective of the direction of residual beigdin
they produce about theandy directions. Now consider the case when pre-stressing cgeterally specified according to

ks = EXF"‘VEyF, ks = VKxr + EyF, (16)

where the governing equations can be written

K+ MKy = ks (a), PKx+ky=Fks (b), (20+V—Wkxy=0 (c), (17)

when the shell is initially flat: note thatis generally retained in Eqn. 17(c).

In these expressions, there are no obvious solutions aparidy = 0 and, hence, it is necessary to solve explicitly for
Kx andky between Eqns. 17(a) and (b), and to substitute the expressisack into Eqn. 2, in order to reveal a characteristic
polynomial equation iqu. This produces

= (@ iy = 1:‘32‘3 (b) = (H=V)(1— ) — (ks — pka) (ks — pkz) = O (c). (18)

|
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The roots of the polynomial produce valuesudbr individual equilibrium cases, which define the defornceidvatures via
Eqgns. 18(a) and (b), whose stability is assessed via theeigees of Eqn. 4. Roots in closed form are not availabléjor
andk, generally but are obtained numerically using the softwaigkpge MATLAB [8], which is also used to compute the
eigenvalues. Figure 3 shows the corresponding resultsriardar shells for a range of pre-stress when there are tralees

of relative shear modulus, which approach the isotropigeia =4 x (1—-v)/2,11x (1-v)/2and 101x (1-v)/2. In
each sub-figure, the colour shading indicates the numbeablesshapes found for each combination of pre-stress.

When ks, kq) are both positive or negative, opposite-sense pre-gigeasses: when they differ in sign, pre-stressing is
in the same sense. Therefore, the first and third quadraateimsub-figure in Fig. 3 show the same results, as do thedecon
and fourth quadrants. All quadrants display either mordetar bistable shells, and bistability is generally aceard/hen
a certain threshold of pre-stress is surpassed. Spegjfited! bistable region emanates from a single point in eaalGunt,
whose coordinates are equal in size, and the levels of peessire the same at these origin points, which are idendiieg
andkj, respectively. For opposite-sense pre-stressing, Eqny§ests

K, K=k (1-v) = kK, kj=+/4(1+V)/q, (19)

and from Eqgn. 14, for same-sense pre-stressing

K, ki =k(1+v) = K, ki=+4(1-v)/@ (20)

Both sets of points are duly indicated on Fig. 3, for confitiorat

For the largestt, there is little difference between the effects of oppesited same-sense pre-stressing.ocAgduces,
the size of the same-sense bistable region diminishesaswlten is very close to its isotropic value, bistability is govedne
by the limiting condition oks = ka: for marginal differences in pre-stress the shell is maalalst However, when the relative
shear stiffness is exactly isotropic, recall from Sectidha neutral stability occurs only whég = k4, thereby confirming
the precision required for making practical neutrally saghells. On the other hand, the relatively indifferentdabur
under opposite-sense pre-stress wharhanges suggests that bistable shells can be more simply pnadided the levels
are large enough and not too dissimilar.



6 Effect of Initial Curvature

As a final exercise, the performance of initially-curvedess-free shells, which are then pre-stressed in the same,se
is considered in more detail. For simplicity, the shell ipheyical cap and the pre-stress levels are identical, ipetiables a
range of results to be presented compactly. Moreover, thierrabis taken to be isotropic, in order to compare the infaee
of initial shape with the initially-flat, neutrally stabléalls of Section 4. In this case,r andkyr are set equal tds,
Kxo = Kyo = Ko andkyyo = 0. The governing equations of deformation for materialrisoy are

Kx+ UKy = (Ko+ks)(1+V) (@), WKx+Ky = (Ko+ks)(1+V) (b), (1—WKyy=0 (C). (21)

As in Section 4= 1 is a valid solution by inspection, with

4(1— V) + 4K3

o V2 _
6= (g _(P(Eo+k5)2(1+v)2] ]7Ky_(|zo+k5)(l+\))_ix. 0

T 2

1+ {1

As discussed previousliy, may not be zero whepm= 1, but there exists a principal setXf- Y axes for whictkxy is zero,
and the other curvaturesy andky, have the same expressions immediately above. T?wis set to zero for convenience.

For other solutions in which # 1, the following third order characteristic equation carfdaend by solving explicitly
for the curvatures in Eqns. 21(a)-(c) and substituting Eda. 2

(M= v+ @K3)(1+ W) — @(Ko + ks)2(1+v)? = 0. (23)

The roots iny can be determined numerically and back-substituted toatdte deformed curvatures, whose stability is
confirmed in the usual way via the positive definiteness of. BgiResults are indicated by the stability landscape shawn i
Fig. 4, constructed as per Fig. 3, for a rang&g@andks, for shells with circular planforms. Accordingly, the pemhance
of the originally flat shell in Section 4 is embraced.

When the pre-stress is moderdtg < 4, shallow shells are monostable and bend spherically isdinge direction as
the pre-stress. Bistability under pre-stress is then aedivhen the magnitude of the initial curvature is large godhe
shell is also bistable when there is no pre-stress, as notghally by Wittrick et al. [9] and more lately by Seffen and
McMahon [10]. The required threshold of initial curvatuestto be greater thagy = /4(1+ v) /@, which can be found by
solving either of Eqns. 21(a) or (b) wiky = Ky andks = 0 for real and stable solutions. Otherwise, the boundanydset
monostable- and bistable regions increases gently and toinally for positively curved shells but for negativelyreed
shells, it behaves differently, with a notable cusp in agagilose tdks = 5.

Whenks > 4, there are five possible responses, depending on the sizggmof the initial curvature. Shells with the
deformed curvatures of Eqn. 22 are neutrally stable pravide

_ 2 1/2
ks > —Ko+ 1rv [(1-v)/o+ Ea ) (24)

which is calculated from the same expressions being vatddeal but which is also confirmed numerically during solntid

the characteristic polynomial. Highly curved shells arstdiile, but if the pre-stress level is large enough undetiy®so,
then it overlaps with the neutrally stable region, as inida From examining the general form of the solution cumesty
the shell is neutrally stable as before in a torsional modi can occupy a stable inverted shape: essentially, oneeof th
stable shapes within the bistable mode becomes neutraliiestNegatively curved shells are neutrally stable onlgmvtne
pre-stress is large enough but generally they are first ntablesand then bistable as the size of initial curvatureciases.

7 Summary

This study has considered the influence of pre-stress onistebke capability of thin shells. By tailoring a general
set of governing equations of deformation derived in anosiedy, closed-form solutions for opposite- and sameesens
pre-stressing have been obtained. In the case of isotrogierial, it has been shown that opposite-sense pre-stgessi



invokes bistability when the pre-stress is large enoughredmfor same-sense pre-stressing, the shell occupiegrallyeu
stable mode with no torsional stiffness. The latter permoe has been observed in heated shells [3, 4] but has not been
formally quantified as a neutrally stable mode. In the cagb@®former, it is analogous to a problem arising in the thérma
curing of certain fibre-composite shells, first reported byeH[11], where residual bending occurs due to the material
anisotropy and to in-plane differential contraction. Hyeted that an initially flat shell distorts into a saddle geofiut,

as the curing temperature increases, this shape becomtablensnd the shell suddenly buckles into a mode dominated
by a single curvature, either up- or downwards. His deteatiom of the buckling condition was performed numerically;
Eqgns. 6, 7 and 9 provide elegant closed-form solutions fompler material specification but, nonetheless, contahat
clarifying Hyer’s findings, which many authors cite as seahiesearch on morphing structures. When the pre-stresislev
are generally different, bistability under opposite-gepee-stressing is not affected by the shear modulus of aht€n

the other hand, same-sense pre-stressing does dependsabreénenodulus; if it is larger than the isotropic value, ishale
bistable but within a narrow band of pre-stress levels, Wigiows with increasing shear modulus: when isotropy plevai
the levels of pre-stress have to be identical for a shell todagtrally stable, otherwise it is monostable. Finallytiadi
curvature alongside pre-stress has produced an integgstiiormance range, including a hybrid performance, cambi
bistability with neutral stability, which is now being vdated in practice.
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1 A thin, pre-stressed bistable smooth shell of diameter BOand thickness 0.1 mm, and made from thin
age-hardened copper beryllium sheet. Left: the originahflatallic disk—note the rectangular sticker tab
fashioned to the upper surface. Middle: the curved shedf gftastic coiling around a pencil stem. Right: a
second curved shape of shell, formed by plastic coilingé&dpposite direction, about an axis at right angles
to the middle shape. The shell is subsequently bistabledsetihe final two curved shapes. . . . . . . .. 10

2  Three views of a neutrally stable shell-strip, made bytaby coiling the original flat strip along and across
its length [1]. In each view, the strip rests such that it idezbabout an axis inclined to the strip length at:
left, 90°, to become full coiled; middle, approximately*4%o form a spiral; right, ©, to yield an open strip.
The transition between shapes is effected by twisting tliglsétween its ends, and there is no stiffness. The
strip is made from age-hardened copper beryllium sheethaad length of 180 mm,; the radius of coiling
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Stability landscape for originally flat shells with preests levelsks andk,, in orthogonal directions accord-

ing to Eqn. 16. Each subplot refers to a specific value of thaive shear modulus: left, 4 x (1—v)/2;
middle, 11 x (1—v)/2; right, 101x (1—v)/2 (the isotropic value bein@l — v)/2). All of the darkest
regions conform to bistable shells and the lightest are rsifobe. The first and third quadrants in each sub-
figure are mirror symmetrical in both axes, as are the secoddaurth quadrants. The white points denote
the closed form solutions asserting the onset of bistalllavdieur when the levels of pre-stress are identical,
given by Eqn. 20 (first and third) and Eqn. 19 (second and lijuiithe value ofpis given by Eqn. 3, where

a circular shell is taken witp = 1, andb*/t?R? is set to a nominal value of unity. The Poisson’s ratio is set
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Regions of stable equilibria for shells with combinatiohsame-sense pre-stressikg,and initial spherical
curvature Ko. The darkest regions conform to bistable configurations;ligihtest region exhibits neutral
stability whilst the second darkest region in the top-rigriner of sub-figure are configurations that possess
a neutrally stable mode and a singly stable, inverted shdpe. second lightest regions are monostable
configurations only. All shells are circular=1,b%/t?’RP=1andv=03. . ... ... ... ....... 13
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Fig. 1. A thin, pre-stressed bistable smooth shell of diameter 50 mm and thickness 0.1 mm, and made from thin age-hardened copper
beryllium sheet. Left: the original flat metallic disk—note the rectangular sticker tab fashioned to the upper surface. Middle: the curved shell
after plastic coiling around a pencil stem. Right: a second curved shape of shell, formed by plastic coiling in the opposite direction, about an
axis at right angles to the middle shape. The shell is subsequently bistable between the final two curved shapes.



Fig. 2. Three views of a neutrally stable shell-strip, made by plastically coiling the original flat strip along and across its length [1]. In each
view, the strip rests such that it is coiled about an axis inclined to the strip length at: left, 90°, to become full coiled; middle, approximately
45°, to form a spiral; right, 0°, to yield an open strip. The transition between shapes is effected by twisting the strip between its ends, and
there is no stiffness. The strip is made from age-hardened copper beryllium sheet, and has a length of 180 mm; the radius of coiling is
approximately 11 mm.
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Fig. 3. Stability landscape for originally flat shells with pre-stress levels, k3 and Kg, in orthogonal directions according to Eqn. 16. Each
subplot refers to a specific value of the relative shear modulus, O: left, 4 X (1—V)/2; middle, 1.1 x (1 —V)/2; right, 1.01x (1—Vv)/2
(the isotropic value being (1 - V)/2). All of the darkest regions conform to bistable shells and the lightest are monostable. The first and
third quadrants in each sub-figure are mirror symmetrical in both axes, as are the second and fourth quadrants. The white points denote the
closed form solutions asserting the onset of bistable behaviour when the levels of pre-stress are identical, given by Eqgn. 20 (first and third)
and Eqn. 19 (second and fourth). The value of @ is given by Eqn. 3, where a circular shell is taken with p = 1, and b4/'[2R2 is set to a
nominal value of unity. The Poisson’s ratio is set to 0.3.
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Fig. 4. Regions of stable equilibria for shells with combinations of same-sense pre-stressing, Ks, and initial spherical curvature, Eo. The
darkest regions conform to bistable configurations; the lightest region exhibits neutral stability whilst the second darkest region in the top-right
corner of sub-figure are configurations that possess a neutrally stable mode and a singly stable, inverted shape. The second lightest regions
are monostable configurations only. All shells are circular, p = 1, b“/tZF\’2 =landv =0.3.



