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ABSTRACT
This study deals with pre-stressed shells, which are capable of “morphing” under large deflexions between

very different load-free configurations. Pre-stressing involves plastically curving a flat, thin shell in orthogonal
directions, either in the opposite- or same sense, resulting in two unique types of behaviour for isotropic shells.
Opposite-sense pre-stressing produces a bistable, cylindrically curved shell provided the pre-stress levels are large
enough and similar in size: this effect forms the basis of a child’s “flick”-bracelet, and is well-known. On the other
hand, same-sense pre-stressing results in a novel, neutrally stable shell provided the levels are also sufficiently large
but identical: the shell has to be made precisely otherwise it is monostable, and is demonstrated here by means of a
thin, helically curved strip. The equilibrium states associated with both effects are quantified theoretically and new
expressions are determined for the requisite pre-stress levels. Furthermore, each stability response is revealed in
closed form where it is shown that the neutrally stable case occurs only for isotropic materials, otherwise bistability
follows for orthotropic materials, specifically, those which have a shear modulus different from the isotropic value.
Finally, pre-stressing and initial shape are considered together and, promisingly, it is predicted that some shells can
be neutrally stable and bistable simultaneously.

1 Introduction
Figures 1 and 2 show two simply-made, thin metallic shells with unusual structural properties. First, there is abistable

disk with two distinct out-of-plane cylindrical shapes. Itis formed by plastically coiling a flat disk around a cylindrical
former in orthogonal directions but inoppositesenses. The coiling process does not have to be exact and the disk can be
a different material: bending the disk manually achieves the same end-point and stiff paper card such as a beer-mat can be
used instead. Afterwards, although initially reluctant todeform, the shell then snaps through between shapes. Second, there
is aneutrally stablestrip, which can, when carefully positioned, rest in one of several helical configurations as shown, each
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being cylindrically coiled about the length-wise axis of strip, with a radius approximately equal to the transverse curvature
of the straightened strip. The manufacturing process is described by Guestet al. [1], which is similar to the bistable case
except that the original, flat strip is curved plastically along and across itself in thesame sensein a very precise manner. The
neutral behaviour can be felt by twisting the strip along itslength by hand, where an absence of torsional rigidity becomes
evident: a long, rectangular section amplifies the helical curving but the effect is preserved in shells with other planforms but
identically made. Thus, the two responses differ because ofthe residual stresses left behind after cold-working; and what is
remarkable is that they can be very different by simply reversing the direction of plastic coiling. These shells demonstrate
simple morphing structures, which can be used to create effective shape-changing—large deflexion—technologies with
unique load-free, equilibrium configurations.

The aim of this study is to understand the factors governing the performance of these shells. In relation to the first
case, Kebadzeet al. [2] consider a thin strip, stress-free and initially curvedacross its width, which is then plastically
coiled back on itself, to create bistability. Most of their study is spent extracting the profile of residual stresses left behind
after pre-stressing: then, assuming aninextensibledeformation mode, they confirm the opposite-sense, orthogonal curvature
of the second equilibrium shape for the particular pre-stress distribution. On the other hand, Mansfield [3, 4] records a
performance akin to neutral stability for a heated lenticular shell, initially free of stresses and flat but subjected touniform
thermal gradients through its thickness. He shows that the shell either bends equally in all directions for low gradients or it
becomes highly curved under severe heating about a single axis whose direction isindeterminate.

This study is not concerned with the mechanics of the pre-stressing process itself, rather, it assumes for simplicity that
pre-stressing impartsuniform residual bending stresses to the shell before any elastic deformation, which must follow for
self-equilibration without applied loads. The analyticalformulation therefore accounts for pre-stress in a simple way but
it generally accounts for in-plane stretching even though inextensible deformations are often justified for very thin shells.
Such asymptotic behaviour can be observed as the limiting case of certain solutions, as will be shown. As well as describing
the equilibrium shapes of shell, the stability conditions for each case in Figs. 1 and 2 can be obtained in closed form, and
the responsible physical mechanism can be identified, whichwould not be straightforward to do using, for example, a finite
element analysis. Accordingly, these conditions can be compared to those for the inextensible shell in [2] or can formally
confirm the neutral stability in [3,4].

Each case is detailed in Sections 3 and 4, respectively, after sketching the formulation in Section 2, which has been
derived elsewhere by the first author. Even though practicalshells are isotropic, the material shear modulus is generally
specified during solution of the governing equations, and the reason is connected to a finding by Seffen [5] who shows that
annealedshells of the same material constitution are bistable if they have the right amount of initial out-of-plane curvature.
Specifically, if there is sufficient positive Gaussian curvature as in cap-like shells, simple isotropic shells are bistable; but
saddle-shaped, stress-free shells with negative Gaussiancurvature are bistable only by increasing the shear modulus, and the
corresponding rise in the torsional stiffness of shell helps to restrain, or lock, the deformed shape.

Pre-stressing of initially-flat shells produces equilibrium states whose stability performance is very different to the effects
of initial shape even though pre-stress and initial shape are similarly expressed in the governing equations of deformation.
Such behaviour has not been reported and it usefully extendsthe previously known results: the difference is due to the
presence, or absence, of initial Gaussian curvature, and not to the final equilibrium shapes. Specifically, it is shown that
bistability under opposite-sense pre-stressing, which attempts to cause negative Gaussian curvature, is not affected by the
value of the shear modulus, whilst same-sense pre-stressing, which deforms the shell to a positive Gaussian curvature,results
in neutral stability for an isotropic value only.

Furthermore, these solutions assume that the shell has beenidentically pre-stressed in orthogonal directions, as suggested
after making several physical samples where, as noted originally, neutrally stable shells are difficult to make when pre-stress
levels are not equal due to manufacturing imperfections. The sensitivity of performance due todisparatepre-stressing is
therefore considered but a valuable conclusion emerges when the shear modulus is permitted to vary, which augments an
earlier conclusion—that neutrally stable behaviour arises only when pre-stress levels are identicaland when the shell is
isotropic. This is carried out in Section 5.

For completeness, a last exercise is considered in Section 6for spherically curved shells, then pre-stressed in the same
sense. This shows that the originally flat neutrally stable shell is part of a family of similarly performing shells but where
additional stable shapes exist, depending on the size of theinitial spherical curvature.

Before closing the introduction, there are two final points to make. First, the analysis requires simplifying but justifiable
assumptions for the sake of transparency, which are explained in [6] and summarised as follows. The material is linearly
elastic, and the strains remain small although the displacements can be large relative to the thickness of the shell. Theinitial
and deformed curvatures are uniform over the bulk of the shell in the absence of externally applied loads, and any practical
boundary layer of non-uniform deformation near the edge of shell is neglected due to its relatively small thickness, which
is taken to be constant throughout. For further mathematical expediency, the shell has an elliptical planform with major and
minor semi-axes parallel to orthogonal coordinates,x andy, respectively. The governing equations, which are algebraic in
nature, are carefully treated to reveal, as far as possible,solutions in closed form. The second point concerns an earlier study
by Guest and Pellegrino [7] on finding bistable shells in a range of materials, which are not pre-stressed or heated, but which



are uniform in shape—similar to here. Their analysis is compact yet general, but it differs from the present study in several
ways. They assume inextensibility from the outset, which leads to the assumption that all equilibria must be cylindrically
curved. Accordingly, bistable shapes need to be described by only two parameters—the direction and orientation of the
cylindrical curvature, and this allows the strain energy stored in the shell to be determined straightforwardly. Rather than
solve explicitly for equilibria, they show that new shapes can be found by graphical inspection of the strain-energy landscape,
and their stability is inferred from the performance of the local contours. The present study explicitly solves non-linear and
coupled governing equations of deformation for new equilibrium shapes. For large displacements, inextensibility follows in
the limiting sense, and the shells tend to cylindrical formsbut otherwise, the shape is generally captured by two independent
curvatures and a twisting curvature. Of course, some of the findings in [7] can be duplicated if the pre-stress is set to zero;
but the reader is referred to the findings in [5] for a more direct comparison of results with Guest and Pellegrino [7].

2 Governing Equations of Deformation
From Seffen [6], the governing equations of deformation foran elliptical shell undergoing relatively large displacements

are

κ̄x +µκ̄y = κ̄x0 + νκ̄y0 + κ̄xF+ νκ̄yF (a), µκ̄x + κ̄y = νκ̄x0 + κ̄y0+ νκ̄xF + κ̄yF (b), (2α+ ν−µ)κ̄xy = 2ακ̄xy0 (c). (1)

The left-sideκ̄ terms are the dimensionless out-of-plane curvatures of thedeformed shell, where subscriptsx andy refer
to ordinary curvatures andxy refers to twisting. On the right side are any initial curvatures, denoted by an extra “0” sub-
script, and theresidualcurvatures due to pre-stressing in orthogonal directions,κ̄xF and κ̄yF: again, an overbar denotes a
dimensionless quantity.

As carefully described in [6], pre-stressing results in permanent bending of the shell and the corresponding residual
curvatures describe the shape of the shell if it could deformfreelywithout constraint,i.e.without developing elastic bending
moments. But the shell cannot do so, and deforms elasticallyto κ̄x, κ̄y andκ̄xy, in order to equilibrate the residual stresses in
the absence of any external loads. Thus, the formulation incorporates the residual curvatures as an initial condition,preceding
elastic deformation: it also accounts for a twisting pre-stress but which is not needed here.

The Poisson ratio isν and the shear modulus relative to the Young’s modulus isα, equal to(1− ν)/2 in the isotropic
case, but otherwise specifyingdirectly isotropicbehaviour, which is a special case of orthotropy where the in-plane Young’s
moduli are identical. The change in the dimensionless Gaussian curvature,∆ḡ, is contained withinµ according to

µ= ν+ φ∆ḡ = ν+ φ
(

κ̄xκ̄y− κ̄2
xy− κ̄x0κ̄y0 + κ̄2

xy0

)

, (2)

whereφ is a factor of material stiffness and geometry given by

φ =
b4

t2R2 ·
(1−ν2)α

3α+(1−ν2−2να)ρ2 +3αρ4 . (3)

The ratio of minor-to-major semi axes lengths,b/a, isρ, the thickness of shell ist, andR is a characteristic radius of curvature
for making the previous curvatures dimensionless according to κ̄ = κR. Note that whenφ >> 1, the shell is very thin, and
inextensibility follows.

Equations 1(a)-(c) and Eqn. 2 are four coupled non-linear equations, which are solved for̄κx, κ̄y, κ̄xy andµ when the
initial shape, material parameters and pre-stress levels are specified. The stability of all equilibrium solutions found is then
assured by the matrix of generalised stiffness being positive definite. This matrix has the general and specific forms as





∂2Ū/∂κ̄2
x ∂2Ū/∂κ̄x∂κ̄y ∂2Ū/∂κ̄xκ̄xy

∂2Ū/∂κ̄y∂κ̄x ∂2Ū/∂κ̄2
y ∂2Ū/∂κ̄y∂κ̄xy

∂2Ū/∂κ̄xy∂κ̄x ∂2Ū/∂κ̄xy∂κ̄y ∂2Ū/∂κ̄2
xy



 =





1+ φκ̄2
y µ+ φκ̄yκ̄x −2φκ̄yκ̄xy

µ+ φκ̄xκ̄y 1+ φκ̄2
x −2φκ̄xκ̄xy

−2φκ̄xyκ̄y −2φκ̄xyκ̄x 4α−2φ∆ḡ+4φκ̄2
xy



 , (4)

whereŪ from [6] is the total dimensionless strain energy stored in the deformed shell.



3 Opposite-Sense Pre-stressing
As shown in Fig. 1, the shell is initially flat and is then pre-stressed by plastically curving in opposite senses. The levels

of pre-stress in both directions are taken to be identical, for this permits a neat closed-form solution; different pre-stress
levels are treated in Section 5. Identical pre-stressing can be availed by settinḡκxF =−κ̄yF = k̄1, say, in Eqns. 1(a)-(c), where
k̄1 is referred to as a “pre-stress” term henceforth for simplicity. All other right-side terms equal to zero, and

κ̄x +µκ̄y = k̄1(1−ν) (a), µκ̄x + κ̄y = −k̄1(1−ν) (b), (2α+ ν−µ)κ̄xy = 0 (c). (5)

Even though the practical shells are metallic, the relativeshear modulus,α, is generally retained. Since there is no twist in
practice, it can be assumed thatκ̄xy = 0, which satisfies Eqn. 5(c). The symmetry of the first two equations permits another
solution in whichκ̄x = −κ̄y = κ̄, say, and either of Eqns. 5(a) or (b) presents

κ̄ +
φ

(1−ν)
κ̄3 = k̄1, (6)

after replacingµ by ν−φκ̄2 using Eqn. 2. This is the non-linear governing equation of opposite-sense bending of the shell,
wherek̄1 determines̄κ monotonically, and there is no bistable behaviour. Stretching is implied by the cubic term in̄κ, which
accounts for a disproportionate increase in the level of middle-surface strains.

Equations 5(a) and (b) are also satisfied byµ= −1, by inspection. Consequently, they collapse into a singleexpression,
κ̄x − κ̄y = (1− ν)k̄1, and from the definition ofµ; κ̄xκ̄y = −(1+ ν)/φ. From these two equations, the set of principal
curvatures can be solved uniquely as

κ̄x =
k̄1(1−ν)

2

[

1±

[

1−
4(1+ ν)

φk̄2
1(1−ν)2

]1/2
]

, κ̄y = −
k̄1(1−ν)

2

[

1∓

[

1−
4(1+ ν)

φk̄2
1(1−ν)2

]1/2
]

, (7)

which are now two equilibrium states, depending on the choice of internal signs. The shell can adopt either state but
interestingly, the product,̄κxκ̄y, for both does not depend on̄k1 and remains constant. Ifα assumes its isotropic value of
(1−ν)/2, then Eqn. 5(c) is automatically satisfied, andκ̄xy does not have to be zero but it is taken to be so since there is no
observed twist.

The solutions offered by Eqns. 6 and 7 are three valid equilibrium states describinḡκx andκ̄y (andκ̄xy), which co-exist
at a single value of pre-stress,k̄1 = k̄∗1, say. For a different pre-stress, the solutions from eitherof Eqn. 6 or Eqn. 7 are stable
when the eigenvalues of the stability matrix in Eqn. 4 are positive after substituting back the solution curvatures for each
mode. In the case of the non-linear initial response, the eigenvalues of the stability matrix can be verified as

4α+2φκ̄2, 1−ν+3φκ̄2, 1+ ν−φκ̄2. (8)

Positive eigenvalues are obtained whenκ̄ is less than a maximum value ofκ̄∗ equal to
√

(1+ ν)/φ, as suggested by the final
eigenvalue above. The value ofk̄∗1 is found by substitutinḡκ∗ back into Eqn. 6 and re-arranging, to reveal

k̄∗1 =

√

4(1+ ν)

φ(1−ν)2 . (9)

This critical pre-stress can be obtained informally from the starting limit on real curvatures in Eqns. 7, where real values
persist only when̄k1 ≥ k̄∗1. In this case, the formal stability calculation shows that the final matrix entry is itself an eigenvalue
whenκ̄xy = 0 and has a value

4α−2φ∆ḡ= 4α+2(1+ ν), (10)



since∆ḡ = −(1+ ν)/φ via µ= −1. This eigenvalue is precisely the dimensionless torsional stiffness of thedeformedshell,
∂2Ū/∂κ̄2

xy, which is always positive irrespective of the value of material shear modulus providedα > 0. Physically, when the
metallic shell in Fig. 1 rests in either equilibrium shape, it is torsionally stiff enough to stabilise against any perturbations of
a twisting nature. Finally, it is noted that for high levels of pre-stress or when inextensibility prevails, such thatk̄1 and/orφ
are large, the asymptotic solutions are(κ̄x, κ̄y) → (k̄1[1−ν], 0) or, equally valid,(κ̄x, κ̄y) → (0, − k̄1[1−ν]), which testify
to the orthogonal cylindrical modes reported in Fig. 1.

4 Same-Sense Pre-stressing
Again, the shell is initially flat but pre-stressing is in thesame sense, to the same degree, and is declared by setting

κ̄xF = κ̄yF, equal tok̄2 in the governing equations, which become

κ̄x +µκ̄y = k̄2(1+ ν) (a), µκ̄x + κ̄y = k̄2(1+ ν) (b), (2α+ ν−µ)κ̄xy = 0 (c). (11)

Whenα is not isotropic in value, then̄κxy must be zero, to satisfy Eqn. 11(c); however, this may not be the case when
α = (1−ν)/2, since the metallic shell in Fig. 2 can be twisted: these cases are treated momentarily.

The symmetry of the first two equations admits a natural solution, κ̄x = κ̄y, equal toκ̄, whereupon substituting intoµ,
and then into either of Eqns. 11(a) or (b), produces

κ̄+
φ

1+ ν
κ̄3 = k̄2. (12)

Compared to Eqn. 6, this expression also describes the non-linear bending of the shell but with a different cubic coefficient.
Equations 11(a) and (b) are also satisfied byµ = 1, which is an automatic solution of Eqn. 11(c) in the isotropic case:

κ̄xy 6= 0 for α = (1−ν)/2, butκ̄xy = 0 for other values ofα. Both of these cases can be treated together by introducing,in
the isotropic case, a new axes set,X andY, suitably rotated fromx andy aboutz, and aligned to the directions of principal
curvature,̄κX andκ̄Y. A Mohr’s circle asserts that̄κx + κ̄y = κ̄X + κ̄Y, (κ̄xκ̄y− κ̄2

xy) = κ̄Xκ̄Y andκ̄XY = 0. Equations 11(a)
and (b) can now be combined to yield̄κX + κ̄Y = k̄(1+ ν), andκ̄Xκ̄Y = (1− ν)/φ from settingµ = 1 and, whenα is not
isotropic, the same expressions arise wherein the subscripts X andY are interchanged withx andy, respectively, which is
implied in the following solutions. Solving for both principal curvatures produces

κ̄X =
k̄2(1+ ν)

2

[

1±

[

1−
4(1−ν)

φk̄2
2(1+ ν)2

]1/2
]

, κ̄Y =
k̄2(1+ ν)

2

[

1∓

[

1−
4(1−ν)

φk̄2
2(1+ ν)2

]1/2
]

. (13)

These are valid equilibrium states whenk̄2 assumes a value larger than a critical value,k̄∗2, where

k̄∗2 =

√

4(1−ν)

φ(1+ ν)2 . (14)

Note the similarity to Eqn. 9 and, as with opposite-sense pre-stressing, the product,̄κXκ̄Y is always a constant irrespective of
the level ofk̄2, whenk̄2 ≥ k̄∗2. The stability performance is formally obtained by reconstructing the elements of the matrix in
Eqn. 4 in theX−Y system, by replacinḡκx, κ̄y andκ̄xy with κ̄X, κ̄Y andκ̄XY, and settinḡκXY = 0.

Whenk̄2 < k̄∗2, it is straightforward to show that the mode described by Eqn. 12 is stable. When̄k2 ≥ k̄∗2, the least positive
eigenvalue is, again, the final matrix entry in Eqn. 4, of value

4α−2φ∆ḡ= 4α−2(1−ν), (15)

since∆ḡ = (1− ν)/φ from µ = 1. In the isotropic case, this eigenvalue is always zero and,because it is also the deformed
torsional stiffness, this result confirms the twisting neutrally stable shell in Fig. 2. If the relative shear modulus isgreater



than (1− ν)/2, the shell is bistable, where the curvatures, now aligned to originalx andy coordinates, adopt either of the
values in Eqn. 13 according to the order of the internal signs. The asymptotic values show that the curvatures clearly diverge
such that, when̄k2 becomes large orφ >> 1, then(κ̄x, κ̄y) → (k̄2[1+ ν], 0) or (κ̄x, κ̄y) → (0, k̄2[1+ ν]), and the shell is
cylindrically curved about one of two orthogonal directions in the same sense.

5 Disparate Pre-stressing
The previous cases assume that the levels of pre-stress are identical, irrespective of the direction of residual bending

they produce about thex andy directions. Now consider the case when pre-stressing can begenerally specified according to

k̄3 = κ̄xF + νκ̄yF, k̄4 = νκ̄xF + κ̄yF, (16)

where the governing equations can be written

κ̄x +µκ̄y = k̄3 (a), µκ̄x + κ̄y = k̄4 (b), (2α+ ν−µ)κ̄xy = 0 (c), (17)

when the shell is initially flat: note thatα is generally retained in Eqn. 17(c).
In these expressions, there are no obvious solutions apart from κ̄xy = 0 and, hence, it is necessary to solve explicitly for

κ̄x andκ̄y between Eqns. 17(a) and (b), and to substitute the expressions back into Eqn. 2, in order to reveal a characteristic
polynomial equation inµ. This produces

κ̄x =
k̄3−µk̄4

1−µ2 (a), κ̄y =
k̄4−µk̄3

1−µ2 (b) ⇒ (µ−ν)(1−µ2)2−φ(k̄3−µk̄4)(k̄4−µk̄3) = 0 (c). (18)

The roots of the polynomial produce values ofµ for individual equilibrium cases, which define the deformedcurvatures via
Eqns. 18(a) and (b), whose stability is assessed via the eigenvalues of Eqn. 4. Roots in closed form are not available fork̄3

andk̄4 generally but are obtained numerically using the software package MATLAB [8], which is also used to compute the
eigenvalues. Figure 3 shows the corresponding results for circular shells for a range of pre-stress when there are threevalues
of relative shear modulus, which approach the isotropic value: α = 4× (1−ν)/2, 1.1× (1−ν)/2 and 1.01× (1−ν)/2. In
each sub-figure, the colour shading indicates the number of stable shapes found for each combination of pre-stress.

When (̄k3, k̄4) are both positive or negative, opposite-sense pre-stressing arises: when they differ in sign, pre-stressing is
in the same sense. Therefore, the first and third quadrants ineach sub-figure in Fig. 3 show the same results, as do the second
and fourth quadrants. All quadrants display either monostable or bistable shells, and bistability is generally accorded when
a certain threshold of pre-stress is surpassed. Specifically, the bistable region emanates from a single point in each quadrant,
whose coordinates are equal in size, and the levels of pre-stress are the same at these origin points, which are identifiedask̄∗3
andk̄∗4, respectively. For opposite-sense pre-stressing, Eqn. 9 suggests

k̄∗3, k̄∗4 = k̄∗1(1−ν) ⇒ k̄∗3, k̄∗4 =
√

4(1+ ν)/φ, (19)

and from Eqn. 14, for same-sense pre-stressing

k̄∗3, k̄∗4 = k̄∗2(1+ ν) ⇒ k̄∗3, k̄∗4 =
√

4(1−ν)/φ. (20)

Both sets of points are duly indicated on Fig. 3, for confirmation.
For the largestα, there is little difference between the effects of opposite- and same-sense pre-stressing. Asα reduces,

the size of the same-sense bistable region diminishes, so that whenα is very close to its isotropic value, bistability is governed
by the limiting condition of̄k3 = k̄4: for marginal differences in pre-stress the shell is monostable. However, when the relative
shear stiffness is exactly isotropic, recall from Section 4that neutral stability occurs only when̄k3 = k̄4, thereby confirming
the precision required for making practical neutrally stable shells. On the other hand, the relatively indifferent behaviour
under opposite-sense pre-stress whenα changes suggests that bistable shells can be more simply made provided the levels
are large enough and not too dissimilar.



6 Effect of Initial Curvature
As a final exercise, the performance of initially-curved, stress-free shells, which are then pre-stressed in the same sense,

is considered in more detail. For simplicity, the shell is a spherical cap and the pre-stress levels are identical, for this enables a
range of results to be presented compactly. Moreover, the material is taken to be isotropic, in order to compare the influence
of initial shape with the initially-flat, neutrally stable shells of Section 4. In this case,̄κxF and κ̄yF are set equal tōk5,
κ̄x0 = κ̄y0 = κ̄0 andκ̄xy0 = 0. The governing equations of deformation for material isotropy are

κ̄x +µκ̄y = (κ̄0 + k̄5)(1+ ν) (a), µκ̄x + κ̄y = (κ̄0 + k̄5)(1+ ν) (b), (1−µ)κ̄xy = 0 (c). (21)

As in Section 4,µ= 1 is a valid solution by inspection, with

κ̄x =
(κ̄0 + k̄5)(1+ ν)

2

[

1±

[

1−
4(1−ν)+4φκ̄2

0

φ(κ̄0 + k̄5)2(1+ ν)2

]1/2
]

, κ̄y = (κ̄0 + k̄5)(1+ ν)− κ̄x. (22)

As discussed previously,̄κxy may not be zero whenµ= 1, but there exists a principal set ofX−Y axes for which̄κXY is zero,
and the other curvatures,κ̄X andκ̄Y, have the same expressions immediately above. Thus,κ̄xy is set to zero for convenience.

For other solutions in whichµ 6= 1, the following third order characteristic equation can befound by solving explicitly
for the curvatures in Eqns. 21(a)-(c) and substituting intoEqn. 2

(µ−ν+ φκ̄2
0)(1+µ)2−φ(κ̄0 + k̄5)

2(1+ ν)2 = 0. (23)

The roots inµ can be determined numerically and back-substituted to reveal the deformed curvatures, whose stability is
confirmed in the usual way via the positive definiteness of Eqn. 4. Results are indicated by the stability landscape shown in
Fig. 4, constructed as per Fig. 3, for a range ofκ̄0 andk̄5, for shells with circular planforms. Accordingly, the performance
of the originally flat shell in Section 4 is embraced.

When the pre-stress is moderate,k̄5 < 4, shallow shells are monostable and bend spherically in thesame direction as
the pre-stress. Bistability under pre-stress is then achieved when the magnitude of the initial curvature is large enough: the
shell is also bistable when there is no pre-stress, as noted originally by Wittrick et al. [9] and more lately by Seffen and
McMahon [10]. The required threshold of initial curvature has to be greater than̄κ∗

0 =
√

4(1+ ν)/φ, which can be found by
solving either of Eqns. 21(a) or (b) with̄κx = κ̄y andk̄5 = 0 for real and stable solutions. Otherwise, the boundary between
monostable- and bistable regions increases gently and monotonically for positively curved shells but for negatively curved
shells, it behaves differently, with a notable cusp in a region close tōk5 = 5.

Whenk̄5 > 4, there are five possible responses, depending on the size and sign of the initial curvature. Shells with the
deformed curvatures of Eqn. 22 are neutrally stable provided

k̄5 ≥−κ̄0+
2

1+ ν
[

(1−ν)/φ+ κ̄2
0

]1/2
, (24)

which is calculated from the same expressions being valid and real but which is also confirmed numerically during solution of
the characteristic polynomial. Highly curved shells are bistable, but if the pre-stress level is large enough under positive κ̄0,
then it overlaps with the neutrally stable region, as indicated. From examining the general form of the solution curvatures,
the shell is neutrally stable as before in a torsional mode orit can occupy a stable inverted shape: essentially, one of the
stable shapes within the bistable mode becomes neutrally stable. Negatively curved shells are neutrally stable only when the
pre-stress is large enough but generally they are first monostable and then bistable as the size of initial curvature increases.

7 Summary
This study has considered the influence of pre-stress on the bistable capability of thin shells. By tailoring a general

set of governing equations of deformation derived in another study, closed-form solutions for opposite- and same-sense
pre-stressing have been obtained. In the case of isotropic material, it has been shown that opposite-sense pre-stressing



invokes bistability when the pre-stress is large enough whereas for same-sense pre-stressing, the shell occupies a neutrally
stable mode with no torsional stiffness. The latter performance has been observed in heated shells [3, 4] but has not been
formally quantified as a neutrally stable mode. In the case ofthe former, it is analogous to a problem arising in the thermal
curing of certain fibre-composite shells, first reported by Hyer [11], where residual bending occurs due to the material
anisotropy and to in-plane differential contraction. Hyernoted that an initially flat shell distorts into a saddle profile but,
as the curing temperature increases, this shape becomes unstable and the shell suddenly buckles into a mode dominated
by a single curvature, either up- or downwards. His determination of the buckling condition was performed numerically;
Eqns. 6, 7 and 9 provide elegant closed-form solutions for a simpler material specification but, nonetheless, contribute to
clarifying Hyer’s findings, which many authors cite as seminal research on morphing structures. When the pre-stress levels
are generally different, bistability under opposite-sense pre-stressing is not affected by the shear modulus of material. On
the other hand, same-sense pre-stressing does depend on theshear modulus; if it is larger than the isotropic value, shells are
bistable but within a narrow band of pre-stress levels, which grows with increasing shear modulus: when isotropy prevails,
the levels of pre-stress have to be identical for a shell to beneutrally stable, otherwise it is monostable. Finally, initial
curvature alongside pre-stress has produced an interesting performance range, including a hybrid performance, combining
bistability with neutral stability, which is now being validated in practice.
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Fig. 1. A thin, pre-stressed bistable smooth shell of diameter 50 mm and thickness 0.1 mm, and made from thin age-hardened copper

beryllium sheet. Left: the original flat metallic disk—note the rectangular sticker tab fashioned to the upper surface. Middle: the curved shell

after plastic coiling around a pencil stem. Right: a second curved shape of shell, formed by plastic coiling in the opposite direction, about an

axis at right angles to the middle shape. The shell is subsequently bistable between the final two curved shapes.



Fig. 2. Three views of a neutrally stable shell-strip, made by plastically coiling the original flat strip along and across its length [1]. In each

view, the strip rests such that it is coiled about an axis inclined to the strip length at: left, 90◦, to become full coiled; middle, approximately

45◦, to form a spiral; right, 0◦, to yield an open strip. The transition between shapes is effected by twisting the strip between its ends, and

there is no stiffness. The strip is made from age-hardened copper beryllium sheet, and has a length of 180 mm; the radius of coiling is

approximately 11 mm.



Fig. 3. Stability landscape for originally flat shells with pre-stress levels, k̄3 and k̄4, in orthogonal directions according to Eqn. 16. Each

subplot refers to a specific value of the relative shear modulus, α: left, 4× (1−ν)/2; middle, 1.1× (1−ν)/2; right, 1.01× (1−ν)/2
(the isotropic value being (1− ν)/2). All of the darkest regions conform to bistable shells and the lightest are monostable. The first and

third quadrants in each sub-figure are mirror symmetrical in both axes, as are the second and fourth quadrants. The white points denote the

closed form solutions asserting the onset of bistable behaviour when the levels of pre-stress are identical, given by Eqn. 20 (first and third)

and Eqn. 19 (second and fourth). The value of φ is given by Eqn. 3, where a circular shell is taken with ρ = 1, and b4/t2R2 is set to a

nominal value of unity. The Poisson’s ratio is set to 0.3.



Fig. 4. Regions of stable equilibria for shells with combinations of same-sense pre-stressing, k̄5, and initial spherical curvature, κ̄0. The

darkest regions conform to bistable configurations; the lightest region exhibits neutral stability whilst the second darkest region in the top-right

corner of sub-figure are configurations that possess a neutrally stable mode and a singly stable, inverted shape. The second lightest regions

are monostable configurations only. All shells are circular, ρ = 1, b4/t2R2 = 1 and ν = 0.3.


