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Abstract –A symmetry-extended Maxwell treatment of the net mobility of periodic bar-and-joint
frameworks is used to derive a sufficient condition for auxetic behaviour of a 2D material. The
type of auxetic behaviour that can be detected by symmetry has Poisson’s ratio −1, with equal
expansion/contraction in all directions, and is here termed equiauxetic. A framework may have a
symmetry-detectable equiauxetic mechanism if it belongs to a plane group that includes rotational
axes of order n = 6, 4, or 3. If the reducible representation for the net mobility contains mechanisms
that preserve full rotational symmetry (A modes), these are equiauxetic. In addition, for n = 6,
mechanisms that halve rotational symmetry (B modes) are also equiauxetic.

Introduction. – Auxetic materials (auxetics) have
the property that when stretched in one direction they ex-
pand in a perpendicular direction, that is, have a negative
Poisson’s ratio. Their proposed uses include applications
in medical, safety and sensing areas [1–5]. Auxetic defor-
mations are closely related to dilatancy in granular matter
[6,7], negative normal stress in e.g. biopolymers [8] and the
negative Poisson’s ratio observed in crumpled crystalline
surfaces and membranes [9, 10]. Auxetic properties are
also known to affect physical properties, such as phonon
dispersion and wave propagation or attenuation [11–13].
The focus of many theoretical treatments of auxeticity is
the identification of mechanisms at the microscopic level
that are able to account for the macroscopic behaviour
of auxetic materials and meta-materials. These typically
involve modelling of a structure in terms of a system of
hinged rotating rigid polygons [14–16] or, in a complemen-
tary approach, as an infinite bar-and-joint framework. The
bar-and-joint model has been used to compile a catalogue
of the auxetic properties of periodic tessellations of the
plane [17–19]. One striking observation that emerges from
examination of this catalogue is concerned with the func-
tional form of the Poisson’s ratio for different 2D auxetic
frameworks. There are two distinct patterns. In many
cases, Poisson’s ratio, ν, the negative of the ratio of trans-
verse to longitudinal strain, is a function of the amount of
strain. However, in some cases ν is constant and is equal
to −1 for all values of strain, the unit cell changes in size
but not shape, and the auxetic behaviour for displacement

along this mode is isotropic (equiauxetic). A material for
which Poisson’s ratio attains its limiting value of −1 has
also been called maximally auxetic [20]. Many examples
of what we are calling equiauxetic behaviour have been
described [21–25]. From the catalogue [17], it is also clear
that equiauxetic behaviour is associated with frameworks
that have certain symmetries. The catalogue contains ex-
amples of equiauxetic frameworks with p6mm symmetry at
equilibrium, where the displaced structure retains p6mm,
p6 or p31m symmetry. Other examples have symmetry
p4mm, where the displaced structure retains p4mm or p4
symmetry.

The aim of the present paper is to give a general explana-
tion for these observations, and to derive a symmetry-based
sufficient criterion for equiauxetic behaviour of a 2D frame-
work. The treatment is based on Maxwell counting for
bar-and-joint and body-and-joint frameworks, extended to
take symmetry into account [26], as recently adapted to
cover periodic frameworks in both 2D and 3D [27].

A symmetry basis for equiauxetic behaviour. –
The qualitative idea needed to explain the proposed con-
nection between symmetry and equiauxetic behaviour in
2D relies on the fact that the only affine deformation of a
continuous body in 2D that has rotational symmetry of
order greater than 2 is a uniform expansion/contraction.
Consider any deformation mode of the unit cell that pre-
serves a rotation axis of order 3 or more. This deformation
must be associated with equal strain in all directions, im-
plying a Poisson’s ratio of −1 for the mode in question,
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which hence is equiauxetic.
What can be said about the symmetry of such a defor-

mation mode? In the language of point groups, characters
and representations, familiar from Chemistry [28], the
mode must belong to an irreducible representation that
has character +1 under proper rotations (Cn)q through
angles 2πq/n. In fact, this also implies that the mode
must be non-degenerate, as the kernels and co-kernels for
degenerate modes of groups Cpv (p = 6, 4) preserve at most
a C2 rotational axis (see [29]). This means all distortions
within the space of doubly-degenerate E-type vibrations
destroy any C6, C4, C3 rotational symmetry.

Candidates for equiauxetic modes are therefore limited
to those belonging to irreducible representations of A-type
(those having character +1 under the principal rotation
Cn for n ≥ 3), and B-type (those having character −1

under the principal rotation Cn but +1 under (Cn)
2
. The

plane groups (and the point groups isomorphic with their
corresponding factor groups) that can support equiauxetic
modes are therefore limited to: p6mm (C6v), p6 (C6) (A
and B modes); p4mm (C4v), p4gm (C4v), p4 (C4), p3m1
(C3v), p31m (C3v), p3 (C3) (A modes). Thus, in the or-
dering used in the International Tables [30], the ‘auxetic
plane groups’ are numbered 10 to 17.

In the following sections, we show how modes of the
required types can be identified for microstructured cellular
materials, which are appropriately modelled as bar-and-
joint [31,32] or body-and-joint frameworks.

Symmetry and Mobility of Periodic Bar-and-
Joint Frameworks in 2D. – It has long been recog-
nised that counting arguments can give powerful conditions
for rigidity/mobility of structures. The Calladine extension
[33] of Maxwell’s rule [34] gives the net mobility (m− s)
of a finite bar-and-joint 2D framework as

m− s = 2j − b− 3 (1)

where m is the number of mechanisms, s is the number of
states of self-stress of a pin-jointed framework with j joints
and b bars, and the constant term accounts for rigid-body
motions. The symmetry-extended equivalent of (1) is [26]

Γ(m)−Γ(s) = Γ(j)×Γ(Tx, Ty)−Γ(b)−Γ(Tx, Ty)−Γ(Rz)
(2)

where each representation Γ(object) describes the symme-
try of a set of objects (which may be joints, rigid elements,
points, vectors or other local structural or dynamical mo-
tifs) in the relevant point group of the structure. Γ(object)
collects the characters χobject(S) of sets of objects, i.e., for
each symmetry operation S, χobject(S) is the trace of the
matrix that relates the set before and after the applica-
tion of S. The rigid-body terms, Γ(Tx, Ty) and Γ(Rz) are
the representations of the in-plane translations and the
in-plane rotation, respectively. For further details see [28].

The terms on the RHS of (2) describe respectively, the
two-dimensional freedoms of the joints, the length con-
straints enforced by the bars, and the removal of the rigid-
body translations and rotation. Each is a generalisation

Frame (a) Frame (b)
Group C2 Group Cs

E C2 E σ
Γ(j) 6 0 6 0

×Γ(Tx, Ty) 2 0 2 0

= 12 0 12 0

−Γ(b) −9 −1 −9 −3
−Γ(Tx, Ty) −2 2 −2 0
−Γ(Rz) −1 −1 −1 1

= Γ(m)− Γ(s) 0 0 0 −2

Fig. 1: Two bar-and-joint frameworks. Both (a) and (b)
comply with the Maxwell rule (1), as expressed in the
columns showing how the different representations behave
under the trivial identity operation E; in each case the
total character given in the final line of the table is zero.
The symmetry-extended equation (2) confirms the zero
count for (a), where the extra symmetry operation is C2

and gives no indication of mechanisms or states of self-
stress. In case (b) the fact that the total character under
the σ-reflection operation is −2 shows that there is at least
one mechanism and one state of self-stress. These can be
identified as the expected symmetry-breaking mechanism
and a totally symmetric state of self-stress.

of the corresponding count in (1). Fig. 1 shows an exam-
ple of a simple system for which symmetry provides extra
information not available from (1).

The scalar counting rule (1) is the character of the full
symmetry equation under the identity operation; it can be
extended to periodic structures. When proper account is
taken of the allowed degrees of freedom of the lattice [35]
(stretches and shear motions) the form of (1) appropriate
to a periodic system in 2D is [27]

m− s = 2j − b+ 1. (3)

Extending (3) to include periodic symmetry gives [27]:

Γ(m)− Γ(s) = Γ(j)× Γ(Tx, Ty)− Γ(b) + Γa (4)

where

Γa = Γ(Tx, Ty)× Γ(Tx, Ty)− Γ(Tx, Ty)− Γ(Rz), (5)

and all representations Γ are to be calculated in the crys-
tallographic point group isomorphic with the factor group
of the full plane group. The representation Γa accounts for
the difference in symmetry between the three possible de-
formations of the unit cell and the two allowed rigid-body
displacements.

A convenient format for the application of this equation
to a periodic framework with some point symmetry is the
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Fig. 2: (a) Kagome framework shown with p6mm sym-
metry elements; (b) symmetry-detected B2 mechanism,
retaining subgroup p31m.

following tabulation, given here for the kagome lattice
(Fig. 2) which has factor group P ∼= C6v in the notation of
[36] which makes clear the connection between the point
group and the crystallographic plane group, in this case
p6mm.

C6v E 2C6 2C3 C2 3σv 3σd
Γ(j) 3 0 0 3 1 1

×Γ(Tx, Ty) 2 1 −1 −2 0 0

= 6 0 0 −6 0 0

−Γ(b) −6 0 0 0 −2 0
+Γa 1 −1 1 5 1 1

Γ(m)− Γ(s) 1 −1 1 −1 −1 1

The result is that Γ(m) − Γ(s) = B2. The conclusion is
that Γ(m) contains a mechanism of B2 symmetry, and
there are no symmetry-detectable states of self-stress. The
detected mechanism is the well known periodic collapse
mode for the kagome lattice [37], where alternate triangles
rotate in opposite senses, as seen in Fig. 2(b). This in fact,
is an auxetic mode.

As an illustration of the additional qualitative informa-
tion provided by the tabulation, consider the C2 column
in this table. The third entry shows that all six freedoms
of the joints are reversed by the C2 operation; all three
points are unshifted by the operation, but it reverses the
attached x and y vectors. The entry for Γ(b) is zero as
all bars are shifted by the operation. The value of 5 for
Γa arises because the three allowed deformations of the
unit cell are symmetric under C2 but the two rigid-body
motions are antisymmetric (5 = +3 − (−2)). The final
total of −1 for the character of Γ(m)− Γ(s) under C2 tells
us that the mechanism that we have detected by using (4)
breaks this symmetry of the lattice.

It should be noted that although equations such as (2)
and (4) can be powerful in revealing more detail than would
be accessible through scalar counting alone, they do have
an important limitation in that they necessarily yield only
the representation of the relative mobility. If a structure
has mechanisms that are equisymmetric with states of self-
stress, there will be no evidence for them in Γ(m)− Γ(s).
By definition, then, the mechanisms revealed by (4) are
symmetry-detectable. The fact that symmetry-detectable

mechanisms may become undetectable on descent in sym-
metry can itself be used to diagnose finite vs. infinitesimal
mechanisms. The scalar counterpart of detectability is that
relationships such as (1) and (3) give only a lower bound
on the number of mechanisms.

A criterion for equiauxetic behaviour. – Com-
bination of the reasoning about rotational symmetry of
auxetic modes with the symmetry-extended mobility rule
(4) leads to the following statement.

Auxeticity Criterion: A periodic 2D system with plane
group G and factor group P = G/T has symmetry-
detectable equiauxetic behaviour if and only if

1. P is isomorphic to a point group from the list C6v,
C6, C4v, C4, C3v, C3, and

2. the reducible representation Γ(m)−Γ(s) contains one
or more copies of an auxetic irreducible representation.
The auxetic irreducible representations are: A1, A2,
B1, B2 in C6v; A, B in C6; A1, A2 in C4v; A in C4; A1,
A2 in C3v; A in C3. (Γ(m) − Γ(s) can be computed
according to (4) for bar-and-joint frameworks, and
(15) for body-and-joint structures)

For practical calculations it is useful to note the compo-
sition of Γa within the relevant point groups:

Γa =



A1 −E1 +E2 (C6v)
A −E1 +E2 (C6)
A1 +B1 +B2 −E (C4v)
A +2B −E (C4)
A1 (C3v)
A (C3)

(6)

An alternative way of reaching the same conclusion, in
the manner of [38], is to calculate the number of times
each auxetic representation occurs in the (reducible) repre-
sentation Γ(m)− Γ(s), i.e., to find the coefficients n(Γi) in
the expansion

Γ(m)− Γ(s) =
∑
i

n(Γi)Γi (7)

where i runs over the irreducible representations of the
group. The coefficients n(Γi) can be found by using well
known projection techniques [28]. It is straightforward to
show that the counts for the auxetic representations are:
C6v
∼= p6mm/T and C4v

∼= p4mm/T ∼= p4gm/T :

n(A1) = 2j1 + jm − (b1 + bm + b2mm) + 1

n(A2) = 2j1 + jm − b1
(8)

C6v
∼= p6mm/T :

n(B1) = 2j1 + jm + j2mm − (b1 + b.m.)

n(B2) = 2j1 + jm + j2mm − (b1 + b..m)
(9)

C3v
∼= p31m/T ∼= p3m1/T :

n(A1) = 2j1 + jm − (b1 + bm) + 1

n(A2) = 2j1 + jm − b1
(10)
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C6 = p6/T and C4 = p4/T :

n(A) = 2j1 − (b1 + b2) + 1 (11)

C6 = p6/T :

n(B) = 2(j1 + j2)− b1 (12)

C3 = p3/T :
n(A) = 2j1 − b1 + 1 (13)

Here, the numbers of joints and bars are those in the
asymmetric unit of the plane group, subscripted with their
(oriented) site symmetry symbol: j1 and b1 are in general
position; j2 and b2 are in special positions having 2-fold
rotational symmetry; jm and bm are on mirror lines; and
j2mm and b2mm are in sites of symmetry C2v ≡ 2mm.
Dots are used, in the fashion of [30], where necessary
to distinguish settings of the mirror line associated with
Cs ≡ m.

Symmetry and Mobility of Periodic Body-and-
Joint Structures in 2D. – The scalar and symmetry-
extended counting rules developed so far apply to the bar-
and-joint model of a repetitive structure. An alternative
model is often employed to describe solid-state materials,
where the structure is considered as consisting of rigid units
connected through flexible joints [39]. For some systems
this model may be more appropriate than the use of bars
and joints, as will appear below in our treatment of the
‘TS-wheels’ tiling [17, 19]. A symmetry-extended counting
rule for the mobility of periodic body-and-joint structures
has been derived [27] and the auxetic criterion discussed
in the previous section applies equally to this model.

The model for the 2D case considers the relative degrees
of freedom of a repetitive mechanical linkage consisting of
unit cells containing n bodies connected by g joints, where
in this case each joint permits a single relative rotational
freedom. The scalar counting rule is

m− s = 3n− 2g + 1 (14)

where the RHS expresses the facts that each body has three
degrees of freedom in the plane, each hinge constrains two
degrees of freedom, and the repetitive nature of the system
gives the additional single freedom, as discussed above in
relation to (3). The symmetry extension of (14) is cast in
terms of properties of the ‘contact polyhedron’ C, which is
in fact an infinite object, but one for which we need only
consider a repeating unit cell. The vertices of C represent
the rigid elements, and the edges joints. As described in
[27], the symmetry-extended counting rule for this case is

Γ(m)− Γ(s) = Γ(v, C)× (Γ(Tx, Ty) + Γ(Rz))−
Γ‖(e, C)× Γ(Tx, Ty) + Γa (15)

where Γa is the same representation as defined in (5).
With the aid of (4) and (15) we now have the conditions

for symmetry-detectable equiauxetic mechanisms in both
bar-and-joint and body-and-joint structures in 2D.
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Fig. 3: (a) The TS-wheels tiling shown with p6mm sym-
metry elements; (b) A2 mechanism retaining p6 symmetry;
(c) TS-wheels tiling shown as a body-joint model; (d) the
contact polyhedron for the body-joint model.

Examples. – In the following, we discuss a number of
example frameworks drawn from [17] chosen to illustrate
points of particular interest. The names for the various
frameworks are those used in the catalogue, and are supple-
mented with the symbol for the tiling taken from [40]. For
each example the plane group, the point group, and the
net mobility are listed. The examples range from overcon-
strained, with m− s negative, to underconstrained, with
m − s positive. In each case a picture and a tabular cal-
culation are given. Each picture shows the framework (in
bold) and symmetry elements according to the conventions
of the International Tables [30], together with translation
vectors delineating the unit cell.

Kagome. This is tiling (3.6.3.6), p6mm, 6mm(C6v),
m − s = 1. The tabular form of the symmetry-adapted
mobility calculation was given earlier. With the chosen
unit cell (Fig. 2), scalar counting gives m−s = 1, implying
the existence of at least one mechanism. The symmetry
calculation reveals that this mechanism is equiauxetic (and
of B2 symmetry). Numerical calculations show that the
mechanism is unique for this smallest choice of unit cell.
As Fig. 2(b) shows, the plane group for the deformed
configuration is p31m, describing a lattice in which each
triangle rotates in an opposite sense to its neighbours.

TS-wheels. This overconstrained framework is the 2-
uniform tiling (36; 32.4.3.4), p6mm, 6mm(C6v), m−s = −3
(Fig. 3(a)). Simple counting indicates only the existence of
three states of self-stress. Counting with symmetry, as in
the tabular calculation shown below, detects a mechanism
of A2 symmetry, which corresponds to concerted rotation
of the hexagonal ‘wheels’, with simultaneous collapse of
the square motifs to flattened rhombi.
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C6v E 2C6 2C3 C2 3σv 3σd
Γ(j) 7 1 1 1 3 1

×Γ(Tx, Ty) 2 1 −1 −2 0 0

= 14 1 −1 −2 0 0

−Γ(b) −18 0 0 0 −4 −2
+Γa 1 −1 1 5 1 1

Γ(m)− Γ(s) −3 0 0 3 −3 −1

Thus Γ(m)− Γ(s) = A2 −A1 −B1 −E1, implying at least
one mechanism, of A2 symmetry, and four states of self
stress, of symmetries A1, B1 and E1.

Numerical calculation [19] shows that the symmetry-
detected mechanism is the sole mechanism for this choice
of unit cell and remains so for larger cells corresponding
to n × n multiples, for at least n ≤ 6. By its symmetry,
this mechanism is equiauxetic. Experimental results for
a constructed cellular metamaterial with rigid joints, and
finite-element simulations of the bar-and-joint framework
confirm this prediction of symmetry analysis [18].

The four states of self-stress predicted by symmetry have
respective representations A1, B1 and E1; the mechanism
would therefore become equisymmetric with the first state
of self-stress if followed down from p6mm to p6, satisfying
a necessary condition for ‘blocking’ of the mechanism,
implying that it might be infinitesimal in character rather
than finite [41,42]. However, it is easy to see here that the
relevent state of self-stress is localised within the hexagonal
wheel and cannot block the rotational mechanism. The
A2-symmetric mechanism will continue all the way to the
collapsed state where all quadrilaterals have flattened out,
yielding a degenerate version of the kagome framework
with superimposed bars.

The irrelevance of the ‘internal’ state of self-stress
to blocking the mechanism is readily apparent in the
alternative body-and-joint model of 2-uniform 5 shown
in Fig. 3(c). Fig. 3(d) shows the contact polyhedron,
with vertices corresponding to rigid triangular bodies.
A tabular calculation according to (15) is shown below.
The result Γ(m)− Γ(s) = A2 −B1 −E1 reveals the same
symmetry-detected A2 mechanism, but now only three
states of self-stress, and in particular no state of self-stress
that is totally symmetric in p6mm. The finite nature of
the equiauxetic A2 mode is therefore apparent from this
more physically insightful choice of model structure.

C6v E 2C6 2C3 C2 3σv 3σd
Γ(v, C) 3 1 3 1 3 1

×Γ(Tx, Ty, Rz) 3 2 0 −1 −1 −1

= 9 2 0 −1 −3 −1

−Γ‖(e, C) −6 0 0 0 −2 0
×Γ(Tx, Ty) 2 1 −1 −2 0 0

= −12 0 0 0 0 0

+Γa 1 −1 1 5 1 1

Γ(m)− Γ(s) −2 1 1 4 −2 0

2-uniform tiling 14. This tiling has the description
(32.4.3.4; 3.4.6.4), p6mm, 6mm(C6v), m − s = −2. The
tiling is illustrated in Fig. 4(a) and is included as an ex-
ample of the possibility of multiple auxetic pathways.

C6v E 2C6 2C3 C2 3σv 3σd
Γ(j) 12 0 0 0 2 2

×Γ(Tx, Ty) 2 1 −1 −2 0 0

= 24 0 0 0 0 0

−Γ(b) −27 0 0 −3 −5 −1
+Γa 1 −1 1 5 1 1

Γ(m)− Γ(s) −2 −1 1 2 −4 0

The final result is Γ(m)− Γ(s) = A2 +B2 −A1 −B1 −E1,
leading to a resolution of the scalar count m − s into a
balance of two mechanisms belonging to distinct represen-
tations A2 and B2 and three states of self-stress belonging
to A1+B2+E. The two mechanisms correspond to distinct
symmetry-reducing pathways, shown in Fig. 4(b,c), leading
to different subgroups of p6mm. The A2 pathway retains
p2 symmetry, and the B2 pathway retains centrosymmetric
mirror symmetry cm. Both mechanisms are found to be fi-
nite [18]. The symmetry results indicate potential blocking
of the mechanism by an equisymmetric state of self stress,
but this does not materialise.

Conclusions. – In this work, symmetry considera-
tions have been used to give a basis for understanding
generic isotropic auxetic (equiauxetic) mechanisms of 2D
materials and meta-materials with sufficiently high symme-
try. Explicit criteria for the detection and characterisation
of such mechanisms have been given here only for bar-and-
joint and body-and-joint models of frameworks, but could
be extended to any model with a well defined notion of
counting degrees of freedom. For symmetric systems, these
criteria are often more informative than purely combinato-
rial approaches. When a system has a unique equiauxetic
mode, it will exhibit auxetic behaviour; in the general case,
the equiauxetic mode may be accompanied by other modes
which may provide alternative non-equiauxetic deforma-
tions.

The theory developed here for 2D materials has a 3D
counterpart and the necessary symmetry-extended mobility
criteria have been given in [27]. In 3D the only affine
deformation that preserves cubic symmetry is uniform
expansion/contraction. The problem of finding 3D systems
with unique equiauxetic modes is challenging.

A direction of future exploration beyond the present
periodic approach is for materials where local symmetry
coexists with long-range disorder. Elastomeric polypropy-
lene films [43] are of this type, and the Poisson’s ratio
and rigidity of random network structures is of interest in
several other physical systems [44,45].
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Fig. 4: (a) 2-uniform tiling (32.4.3.4; 3.4.6.4) shown with p6mm symmetry elements; (b) A2(p6) mechanism (unit cell
contracted by a factor of 0.1); (c) B2(p31m) mechanism.
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