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ABSTRACT12

Tensegrity metamaterials are a type of artificial materials which can exploit the tunable nonlinear mechanical behavior13

of the constituent tensegrity units. Here we present reduced-order analytical models which describe the prestrain-14

induced bistable effect of two particular tensegrity units. Closed-form expressions of the critical prestrain at which a15

unit transitions into a bistable regime are derived. Such expressions depends only on the geometry of the units. The16

predictions of the reduced-order model are verified by numerical simulations and by the realization of physical models.17

The present results can be generalized to analogous units with polygonal base, and the proposed tensegrity units can18

be assembled together to form one-dimensional metamaterials with tailorable nonlinear features, such as multistability19

and solitary wave propagation.20

Architected metamaterials have been studied extensively in21

recent years1,2, with particular attention to multistable meta-22

materials obtained by tessellating units with bistable behavior.23

For instance, multistable metamaterials were proposed for en-24

ergy trapping and impact mitigation3, and for the stable trans-25

mission of mechanical signals over arbitrary distances4. The26

propagation of transition waves in one-dimensional lattices27

composed of concentrated masses and bistable springs was28

treated analytically5, and typical multistable metamaterials29

were optimized6 and extended to two and three dimensions7.30

In the particular class of tensegrity metamaterials the re-31

peating unit is a tensegrity structure8–10, that is, a prestressed32

cable-bar framework. Because many tensegrity structures are33

deployable and/or possess a highly nonlinear response de-34

pending on their geometry and level of prestress11–13, these35

types of structures became of interest for realizing adaptive36

and tunable structures14. Researchers have used stimulus-37

responsive polymers to achieve programmable deployment38

of tensegrity structures15, and studied the bandgap tun-39

ing of tensegrity chains numerically16 and experimentally17.40

Tensegrity chains can also support the propagation of soli-41

tary waves, which was observed in one-, two-, and three-42

dimensional tessellations of tensegrity units18–22. The me-43

chanical response of three-dimensional tensegrity metamate-44

rials was studied with continuum models23,24, and different45

regimes of wave propagations were shown to depend on the46

selfstress level25. In addition, optimal-density26 and energy-47

dissipation27 planar tensegrity metamaterials were proposed,48

and a systematic approach to obtain tensegrity metamaterials49

with desired properties was devised28. Although additively50

manufactured tensegrity-like metamaterials with no prestress51

have been experimentally studied29–32, the additive manu-52

facturing of prestressed tensegrity-like metamaterials has not53

been attempted yet. Nevertheless, possible prestressing pro-54

cedures at the microscale could rely on 4D printing33, for ex-55

ample by using two-photon laser printing of photo-responsive56

structures34.57

Here we introduce two tensegrity structures, the "six-node"58

and the "eight-node" units, which demonstrate a monostable-59

to-bistable transition triggered by changes in geometry and60

selfstress level. Previous research has shown that some61

tensegrity structures can exhibit bistable35,36 or multistable37
62

behavior. Our units are the smallest known spatial tensegrity63

structures with such features. Each unit show different aspects64

of the possible bistable regimes, with the six-node unit having65

no infinitesimal mechanisms, and the eight-node having three.66

We developed analytical models for each structure to calculate67

the critical prestrain, the amount of prestrain necessary for the68

units to enter a bistable regime. These models were consistent69

with the structures’ symmetry properties and allowed us to de-70

rive closed-form expressions for the critical prestrain. We per-71

formed numerical simulations on one-dimensional assemblies72

of the units, which confirmed the expected prestrain-induced73

multistable behavior. We verified our analytical and numeri-74

cal results through physical models with different bistable re-75

sponses. These findings have implications for the design and76

benchmarking of mechanical metamaterials with adjustable77

multistable behavior.78

A tensegrity structure T is given by a set of nodes, a set79

of edges, and a set of labels. The nodes are points in three-80

dimensional space, with position vector pi for the i-th node81

and p denoting the collection of all nodal position vectors,82

while the edges connect pairs of nodes and are labeled as "bar"83

or "cable". The current length, rest length, and spring constant84

of the edge i j connecting nodes i and j are li j = |pi � p j|,85

li j > 0, ki j > 0, respectively. We consider an elastic energy38
86

U(p) =
1

2
∑

i j2E

ki j (li j(p)� li j)
2 . (1)87
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Prestrain-induced bistability in the design of tensegrity units for mechanical metamaterials 2

At a selfstressed equilibrium configuration p
(eq) for T , the88

elastic energy is stationary:89

∂pU(p(eq)) = ∑
i j2E

ti j ∂p li j (p
(eq)) = A(p(eq)) t = 0 . (2)90

In (2), ∂p(·) denotes the derivative with respect to p, while91

ti j = ki j (li j(p)� li j) is the axial force carried by an edge, lin-92

ear in the edge elongation. The vector containing all axial93

forces is t, and A is the equilibrium operator. The stationary94

condition (2) requires that the selfstress state t belongs to the95

nullspace of A(p(eq)).96

The tangent stiffness operator, KT , equal to the Hessian of97

the elastic energy, ∂ 2
p

U , is98

KT = ∂ 2
p

U = ∑
i j2E

�
ki j ∂p li j ⌦ ∂p li j + ti j ∂ 2

p
li j

�
= KM + KG ,

(3)99

where the first and second terms in the summations contribute100

respectively to the material stiffness operator, KM , which de-101

pends on the spring constants, and the geometric stiffness op-102

erator, KG, which depends on the axial forces (see36,39,40 for103

details). We recall that the internal mechanisms of T , if any,104

are the sets of nodal displacements which do not cause first-105

order changes of the edge lengths41,42, excluding rigid-body106

motions. Internal mechanisms and rigid-body motions lie in107

the nullspace of KM .108

The positive definiteness of KT is a sufficient condition109

for the stability of an equilibrium configuration; however,110

there are two more specialized stability conditions for tenseg-111

rity structures. The notion of prestress stability43 applies to112

tensegrity structures with non-null self-stress possessing inter-113

nal mechanisms. A tensegrity structure is said to be prestress114

stable if, for every internal mechanism v 2 null(KM),115

KG v · v > 0 . (4)116

This condition states that every internal mechanism is associ-117

ated to a first-order increase of the elastic energy, or, in other118

words, that the selfstress state stiffens every internal mech-119

anisms. If (4) holds at a certain equilibrium configuration,120

and KG has no negative eigenvalues, then we speak of super121

stability44, that is, the structure at p
(eq) is stable independently122

of material properties and of the level of self-stress. On the123

contrary, if KG has negative eigenvalues, whether there are124

internal mechanisms or not, then it is possible that a stable125

tensegrity structure at a certain selfstress level becomes unsta-126

ble at larger selfstress levels36,40. In fact, given a selfstressed127

equilibrium configuration where KT is positive definite and128

KG has a negative eigenvalue, since KG is linear in the axial129

forces ti j, it is possible to scale up KG with the selfstress in130

the elements by suitable changes of rest lengths until KT is131

not positive definite anymore. Similar situations in which the132

(positive) material stiffness is in competition with a negative133

geometric stiffness occur also in typical continuum mechan-134

ics problems, such as, e.g., the buckling of a beam subjected to135

axial compression, the buckling of thin-walled columns with136

residual stresses, or the zero stiffness of prestressed rings ob-137

tained by bending a initially straight rod with circular cross138

section with respect to eversion deformations45.139

The case of a KG with some negative eigenvalues applies140

to the two tensegrity units we propose: both are stable in a141

certain configuration at low to moderate self-stress levels but142

become unstable when the self-stress level exceeds a certain143

critical value. This leads to the emergence of two additional144

stable configurations, indicating a switch from a single- to a145

double-well energy landscape. The eight-node unit features146

also another bistable regime when its configuration is pre-147

stress unstable (KG v · v < 0 for some v 2 null(KM)). In148

the following, self-stress levels are quantified in a dimension-149

less way in terms of elements’ prestrain, here defined as40
150

ε0 := (λ0 �λ )/λ0, with λ and λ0 respectively the rest length151

of a characteristic element and its length in a reference equi-152

librium configuration.153

Figure 1(a,b) depicts stable configurations for the six-node154

(a) and the eight-node unit (b), corresponding to different pre-155

strain values. The six-node unit has no internal mechanisms,156

while the eight-node unit has three internal mechanisms and157

is prestress-stable when its geometric parameters range in a158

certain set. Each unit can exhibit configurations with symme-159

try point group D2h (left configurations in Fig.1(a,b)) and with160

symmetry point group D2 (right configurations in Fig.1(a,b)).161

In the former case, symmetry operations correspond to an in-162

version center, three mirror planes, and three two-fold cyclic-163

symmetry axes, while in the latter case, they correspond to164

just three two-fold cyclic-symmetry axes.165

By performing numerical simulations based on the full-166

order model described above, we found that the structures de-167

picted on the left in Fig.1(a) and (b) become bistable when the168

prestrain of elastic cables exceeds a certain critical value. By169

chosing a D2h symmetric configuration as reference configu-170

ration, the bars were considered rigid, while the cables were171

modeled as elastic springs with same spring constant k, rest172

length λ , and prestrain ε0, except for the two vertical cables in173

the eight-node unit shown in Fig.1(b, left), which were mod-174

eled as inextensible. To enforce rigidity and inextensibility175

constraints, the corresponding members were assigned a large176

spring constant relative to k. With these choices, the equilib-177

rium condition (2) is satisfied in the reference configuration.178

The smallest nonzero eigenvalue ξ of KT is then computed179

as a function of prestrain in that configuration. The results180

are shown in Fig.1(c,d) and reveal that the smallest nonzero181

eigenvalue becomes negative when prestrain values become182

large enough. We observed that the associated eigenvector183

corresponds to a twisting deformation mode with D2 symme-184

try (Fig.1(e,f)). Afterward, we run a number of simulations185

in which the D2h reference configurations shown in Fig.1(a)186

and (b) are perturbed by random nodal displacements of small187

magnitude, with no prescribed symmetry, and the energy (1)188

is minimized by using a standard numerical procedure. For189

the same values of prestrain determined by the analysis of KT190

in the reference configuration, when the prestrain ε0 is small,191

the structures return to the unperturbed D2h symmetric config-192

uration, while for large prestrains, they find either one of two193

other stable equilibrium configurations, away from the unper-194

turbed one, both possessing D2 symmetry and mirror images195

of each other. The stability of each of the D2 symmetric equi-196

librium configuration is verified by the positive definiteness197
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FIG. 1. The “six-node” (a) and the “eight-node” (b) units, both shown in equilibrium configurations with D2h and D2 symmetry. Normalized

smallest nonzero eigenvalue of the tangent stiffness matrix vs. prestrain (c,d) and corresponding eigenmodes (e,f): for the six-node unit,

with geometric parameters (see Fig.2(a)): c/a = 10/8, b/a = 5/8 (c,e); for the eight-node unit, with geometric parameters (see Fig.3(a)):

c/a = 12/8, b/a = 5/8, d/a = 4/8 (d,f).

of KT . No other equilibrium configurations were found in198

the vicinity of the reference configuration, thus demonstrating199

the prestrain-induced monostable to bistable transition of the200

units. The admissibility of axial forces, i.e., cables being in201

tension, is checked a posteriori in all calculations.202203

We describe next the two reduced-order models of these204

units. Consider the six-node unit in the reference configura-205

tion defined by the parameters a, b, and c shown in Fig.2(a),206

consisting of rigid bars and linear springs (the cables). The207

springs are assumed to have the same spring constant k, and208

their rest length is λN  λ0 =
p

a2 +b2 + c2. The system’s209

D2 symmetric configurations can be identified by the relative210

rotation angle 2θ about the vertical axis between the bars AB211

and CD. In the projected view on the x� y plane (Fig.2(b)),212

the bar EF remains orthogonal to the line bisecting the angle213

2θ . Springs can be grouped in two categories: those whose214

length increase with θ , and those whose length decrease with215

θ , depicted respectively in orange and green in Fig.2(a).216

The elastic energy of the system is given by217

U(θ) = 2k
⇣
(λ1(θ)�λ )2 +(λ2(θ)�λ )2

⌘
, (5)218

with λ1 and λ2 the current lengths of the orange and green219

springs, respectively. The Supplementary Material includes220

calculations demonstrating that the energy is stationary at221

θ = 0, and the corresponding configuration is stable only222

when the prestrain ε0 is less than a critical value εcrit, which is223

determined solely by the geometry and can be expressed as224

εcrit =
1

1+
1

sin2 α

, (6)225

with α = 1
2
dEAF . Fig.2(c) shows the monotonic relationship226

between α and εcrit. Fig.2(d) displays the change in elastic227

energy from the value U0 in the reference configuration, nor-228

malized by k,λ 2
0 , for different prestrains, and highlights the229

shift from a monostable to a bistable regime as prestrain in-230

creases, along with the ranges in which axial forces in cables231

are positive.232

We consider now the eight-node unit in the reference con-233

figuration defined by the parameters a, b, c, and d < c shown234

in Fig.3(a), obtained from the previous structure by doubling235

the central bar and adding two vertical cables. We assume that236237

bars are rigid and that cables have same spring constant k and238

rest length λ < λ0 =
p

a2 +b2 +(c�d)2, except for EG and239

FH, which are inextensible. We require the structure to re-240

tain D2 symmetry during a motion. Therefore, if AB rotates241

with respect to CD by an angle 2θ1 about the z axis, and EF242

rotates with respect to GH by an angle 2θ2 about the same243

axis, then in the projected view onto the Cartesian x� y plane244
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FIG. 2. The six-node tensegrity unit: (a) at the configuration with D2h symmetry, axonometric view; (b) at a configuration with D2 symmetry,

projection onto the x-y plane with only bars AB, CD, and EF shown. (c) Critical prestrain εcrit vs α = 1
2
dEAF for the six-node unit. (d) Plot of

the non-dimensional change of elastic energy from the value U0 in the reference configuration for various values of prestrain for the six-node

unit with c/a = 10/8, b/a = 5/8. The blue color of the curves indicates that cables axial forces are positive, the orange color that some cables

have negative axial forces. The dashed curve represents the energy corresponding to the critical prestrain (εcrit = 0.117). The starred point

corresponds to the equilibrium configuration shown in Fig.1(a, right) as obtained from the full-order model.

the bisecting lines of these angles remains orthogonal to each245

other (Fig.3(b)). As in the previous model, there are two kind246

of springs, depicted in Fig.3(a) in orange, with length λ1, and247

green, with length λ2. The angles θ1 and θ2 are the two La-248

grangian parameters for the system.249

The elastic energy is given by250

U(θ1,θ2) = 2k
⇣
(λ1 �λ )2 +(λ2 �λ )2

⌘
. (7)251

Calculations given in the Supplementary Material show that252

(θ1,θ2) = (0,0) is an equilibrium configuration, and that the253

corresponding geometric and material stiffness operators can254

be expressed as255

[KG] = 8k
λ0 �λ

λ0

2
4
� a2

c
(c�d)� a2b2

λ 2
0

a2b2

λ 2
0

a2b2

λ 2
0

b2

d
(c�d)� a2b2

λ 2
0

3
5 ,256

and257

[KM] = 8k
a2b2

λ0


1 �1

�1 1

�
.258

Internal mechanisms consistent with the D2 symmetry have259

the form260

[v ] = θ̄


1

1

�
, (8)261

with θ̄ an arbitrary scalar, and correspond to the relative rigid262

rotations of the tetrahedron ABEF with respect to the tetrahe-263

dron CDGH about the vertical symmetry axis.264

The prestress stability condition, KG v · v > 0 gives265

8k ε0(c�d)(�
a2

c
+

b2

d
)> 0, (9)266

where ε0 = (λ0 �λ )/λ0. Since c > d, we have267

b2

d
>

a2

c
, (10)268

or, by introducing the dimensionless parameters269

δ :=
b

a
, γ :=

d

c
, (11)270

we can rewrite the prestress stability condition as271

γ < δ 2 . (12)272

By considering that ε0 > 0, the condition for positive defi-273

niteness of KT = KM +KG amounts to requiring that274

�ε0

 
c�d

cd
+

1

λ 2
0

✓
b2

d
�

a2

c

◆!
+

1

λ 2
0

✓
b2

d
�

a2

c

◆
> 0 , (13)275

or,276

ε0 <
1

1+
1� γ

1�
γ

δ 2

1

sin2 α

=: εcrit , (14)277
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FIG. 3. The eight-node tensegrity unit: (a) at the configuration with D2h symmetry, axonometric view; (b) at a configuration with D2 symmetry,

projection onto the x-y plane with only bars AB, CD, EF , and GH shown. (c,d) Contour plots of the elastic energy for the prestress-stable

eight-node unit A, with δ := b/a = 5/8 and γ := d/c = 1/3, which give α = 23.84� and εcrit = 0.0347, for a prestrain below, ε0 = 0.0300

(c), and above, ε0 = 0.1500 (d), the critical value. Blue contour lines indicate that cables axial forces are positive, orange contour lines that

some cables have negative axial forces. The dotted lines are parallel to the eigenvectors, while the dashed line corresponds to the direction

of the internal mechanism (θ1 = θ2), evaluated at (θ1,θ2) = (0,0). The starred points represent stable equilibrium configurations obtained

numerically from the full-order model. (e) Contour plots of the elastic energy for the prestress-unstable eight-node unit B, with δ := b/a= 8/14

and γ := d/c = 8/21, which gives α = 22.72�, for the prestress strain ε0 = 0.0700. (f) Contour plot of the critical prestrain for the eight-node

unit with c/a = 3/2, as a function of δ := b/a and γ := d/c. The two configurations, eight-node A, with δ = 5/8, γ = 1/3, and eight-node B,

with δ = 8/14, γ = 8/21, are marked.

where sinα = b/λ0, with α = 1
2
dEAF . Notice that, in the limit278

for d ! 0, γ ! 0, and we find (6) again, while, if b ! 0, then279

εcrit !
1

1+(1� γ�1)
λ 2

0

a2

. (15)280

Moreover, we have that εcrit ! 0 when γ �δ 2 ! 0.281

Figure 3(c,d) shows the contour plots of the elastic energy282

U(θ1,θ2) for a prestress stable eight-node unit (A), for pre-283

strain values above (c) and below (d) the critical value. The284

plots display also the region with positive axial forces in ca-285

bles, the mechanism and eigenvector directions at (θ1,θ2) =286

(0,0), and the stable configurations obtained numerically us-287

ing the full-order model. It can be observed that, for the288

monostable structure, the mechanism direction is close to one289

of the eigenvector directions. Fig.3(e) displays the contour290

plot of the energy for a prestress-unstable eight-node unit (B).291

Stable configurations for this unit are located in the direction292

of the mechanism. Fig.3(f) shows the contour plot of the crit-293

ical prestrain (14) for c/a = 12/8, with the marked positions294

defining units eight-node A and eight-node B.295

One-dimensional assemblies of each unit were analyzed296

numerically using the full-order model. Adjacent units in an297

assembly share a subset of elements, as shown in Fig.4(a,b).298

Bars are rigid and cables linearly elastic, except for the cables299

parallel to the longitudinal axis, which are inextensible. In300

order to have equal units in geometry and selfstress, we con-301

sidered a = b, and same prestrain ε0 and spring constant k for302

all elastic cables, except for the four cables at each end of the303

assembly, which have spring constant k/2.304
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(a)

(b) (d)

(c)

FIG. 4. Two-unit assemblies, based on the six-node (a) and eight-node (b) tensegrity units. (c) Multiple stable equilibrium configurations of

a chain assembled from the six-node unit (c/a = 1.5, b/a = 1, giving α = 29.02�, εcrit = 0.1905). The straight configuration is obtained for

ε0 = 0.1; two different twisted configurations are obtained for ε0 = 0.2. (d) Multiple stable equilibrium configurations of a chain assembled

from the eight-node unit (c/a = 2, δ = 1, γ = 1/3 giving α = 30.96�, εcrit = 0.2093). The straight configuration is obtained for ε0 = 0.15;

two different twisted configurations are obtained for ε0 = 0.26. In each case, a longitudinal row of elements is highlighted. The curved arrow

pairs indicate the twisting direction of the units.

TABLE I. Geometric characterization of the realized tensegrity units.

six-node unit eight-node case A eight-node case B

(prestress-stable) (prestress-unstable)

monostable bistable monostable bistable bistable

a [mm] 135 135 135 135 135

b [mm] 62 62 130 130 80

c [mm] 170 170 235 235 235

d [mm] - - 85 85 85

λ0 [mm] 226 226 240 240 217

εcrit [%] 7.0 7.0 21.9 21.9 -

λ [mm] 212 190 190 160 200

ε0 [%] 6.2 15.9 20.8 33.3 7.8

Starting from prestressed assembly configurations with D2h305

symmetric units, simulations are conducted in two steps. First,306

a twisting load is applied to the assembly, and the equilibrium307

configuration reached under such load is determined. Sec-308

ond, the twisting load is removed, and the final equilibrium309

configuration is determined. If ε0 < εcrit, the final equilib-310

rium configuration coincides with the starting configuration.311

If ε0 > εcrit, different twisted equilibrium configurations are312

obtained depending on the applied and removed twisting load,313

demonstrating the multistable response of such assemblies.314

Figure 4(c,d) shows simulation results for particular assem-315

blies of both types of units. All units are twisted in the same316

way in Figure 4(c,d,middle) in a periodic overall deformation,317

while in Figure 4(c,d,bottom) the assembly is twisted partly in318

one way and partly in the other way.319

Physical models of the two units are presented next. The320

units were built of wooden bars and additively manufactured321

nodes and cables obtained by fused deposition modeling. Ca-322

bles were fabricated using polyurethane, except for the two323

‘inextensible cables’ in the eight-node unit, which were re-324

alized in polylactic acid. To connect the bars and cables325

that converge into the nodes of the units, specially designed326

universal joints realized in polylactic acid were used. Five327

tensegrity units with different prestrain were tested to con-328

firm the monostable to bistable transition, two specimens of329

the six-node unit with monostable and bistable configurations,330

and three specimen of the eight-node unit: case A, prestress-331

stable, which can be either monostable or bistable, and case B,332

which is prestress-unstable and bistable. Dimensions and pre-333

strain of the units are listed in Table I. Small random perturba-334

tions of the equilibrium configurations were manually applied335

to verify the expected monostable/bistable behavior. Photos336

of the units are shown in Fig.5(a-f). Additionally, Fig.5(g-j)337

depicts models of three-unit and nine-unit tensegrity chains338

based on the six-node unit.339

This study can be extended to similar units with a polyg-340

onal base (see the Supplementary Material) and has potential341

applications to the design and benchmarking of multistable342

metamaterials. Future work can regard the additive man-343

ufacturing of tensegrity-like structures with cables replaced344

by bars, using compliant hinges instead of pin-connections30,345

and employing responsive materials, such as photo-thermal-346
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(a) (c)

(d) (e) (f)

(b)

(g) (h) (i)

(j)

FIG. 5. Photos of the models of the two tensegrity units (a-f). Six-node tensegrity unit: monostable (a) and bistable (b). Detail of the universal

joint (c). Eight-node tensegrity unit: bistable (case A) (d), monostable (case A) (e), bistable (case B) (f). Photos of models of two tensegrity

chains based on the six-node tensegrity unit (g-j). A three-unit bistable structure showing two stable configurations (a,b). A nine-unit structure

in one of its stable configurations, shown in a top (c) and lateral (d) view.

responsive liquid-crystal elastomers34,46, that have actuation347

strains up to about 0.247. The effect of external loads, nodal348

constraints, and more elaborate constitutive models could349

also be explored for better predictions of monostable-bistable350

switching.351

352

See the Supplementary Material for detailed calculations on353

the six-node and eight-node units.354
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