Supplementary Material of the manuscript

Prestrain-induced bistability in the design of tensegrity units
for mechanical metamaterials

A. Micheletti, ${ }^{1}$ F.A. dos Santos, ${ }^{2}$ and S. D. Guest ${ }^{3}$
${ }^{1)}$ Department of Civil and Computer Science Engineering,
University of Rome Tor Vergata
${ }^{2)}$ CERIS-NOVA, Department of Civil Engineering, NOVA School of Science and Technology, NOVA University of Lisbon
${ }^{3)}$ Department of Engineering, University of Cambridge

(*Electronic mail: micheletti@ing.uniroma2.it)
(Dated: 16 August 2023)

I. SIX-NODE UNIT CALCULATIONS

FIG. S1. The six-node tensegrity unit: (a) at the configuration with $D_{2 h}$ symmetry, axonometric view; (b) at a configuration with D_{2} symmetry, projection onto the $x-y$ plane with only bars $A B, C D$, and $E F$ shown. The parameter θ defines the configuration in the single-DOF model.

We make use of the formula

$$
|P Q|^{2}=r_{P}^{2}+r_{Q}^{2}-2 r_{P} r_{Q} \cos \left(\varphi_{P}-\varphi_{Q}\right)+\left(z_{P}-z_{Q}\right)^{2}
$$

for computing the distance between two points in the cylindrical coordinate system, $\{r, \varphi, z\}$ centered on the vertical symmetry axis.

We define $2 h(\theta)=z_{A}-z_{C}=z_{B}-z_{D}$, with $h(0)=c$. We have

$$
\begin{equation*}
|A D|^{2}=(2 c)^{2}=(2 h(\theta))^{2}+2 a^{2}(1-\cos (2 \theta)), \tag{S1}
\end{equation*}
$$

so that

$$
\begin{equation*}
h^{2}(\theta)=c^{2}+\frac{a^{2}}{2}(\cos (2 \theta)-1) \tag{S2}
\end{equation*}
$$

As to the lengths of the springs, we have

$$
\begin{align*}
& \lambda_{1}^{2}(\theta)=a^{2}+b^{2}-2 a b \cos \left(\frac{\pi}{2}+\theta\right)+h^{2}(\theta) \tag{S3}\\
& \lambda_{2}^{2}(\theta)=a^{2}+b^{2}-2 a b \cos \left(\frac{\pi}{2}-\theta\right)+h^{2}(\theta) \tag{S4}
\end{align*}
$$

substituting (S2) we obtain

$$
\begin{align*}
& \lambda_{1}(\theta)^{2}=c^{2}+b^{2}+\frac{a^{2}}{2}(1+\cos (2 \theta))-2 a b \cos \left(\frac{\pi}{2}+\theta\right) \tag{S5}\\
& \lambda_{2}(\theta)^{2}=c^{2}+b^{2}+\frac{a^{2}}{2}(1+\cos (2 \theta))-2 a b \cos \left(\frac{\pi}{2}-\theta\right) \tag{S6}
\end{align*}
$$

The first and second derivatives of these quantities are

$$
\begin{gather*}
2 \lambda_{1} \lambda_{1}^{\prime}=-a^{2} \sin (2 \theta)+2 a b \cos \theta, \tag{S7}\\
2 \lambda_{2} \lambda_{2}^{\prime}=-a^{2} \sin (2 \theta)-2 a b \cos \theta, \tag{S8}\\
2 \lambda_{1} \lambda_{1}^{\prime \prime}=-2 a^{2} \cos (2 \theta)-2 a b \sin \theta-2\left(\lambda_{1}^{\prime}\right)^{2}, \tag{S9}\\
2 \lambda_{2} \lambda_{2}^{\prime \prime}=-2 a^{2} \cos (2 \theta)+2 a b \sin \theta-2\left(\lambda_{2}^{\prime}\right)^{2} . \tag{S10}
\end{gather*}
$$

The potential energy of the system is given by the elastic energy

$$
\begin{equation*}
U(\theta)=2 k\left(\left(\lambda_{1}-\bar{\lambda}\right)^{2}+\left(\lambda_{2}-\bar{\lambda}\right)^{2}\right), \tag{S11}
\end{equation*}
$$

in which $\bar{\lambda}$ is the common rest-length of the springs. We compute the first derivative and set it equal to zero to find the stationary points; we have:

$$
\begin{equation*}
U^{\prime}(\theta)=4 k\left(\lambda_{1}^{\prime}\left(\lambda_{1}-\bar{\lambda}\right)+\lambda_{2}^{\prime}\left(\lambda_{2}-\bar{\lambda}\right)\right)=0 \tag{S12}
\end{equation*}
$$

obtaining the condition

$$
\begin{equation*}
\lambda_{1}^{\prime}\left(\lambda_{1}-\bar{\lambda}\right)=-\lambda_{2}^{\prime}\left(\lambda_{2}-\bar{\lambda}\right) \tag{S13}
\end{equation*}
$$

We see that $\theta=0$ is a stationary point for the energy, since

$$
\begin{equation*}
\lambda_{1}(0)^{2}=\lambda_{2}(0)^{2}=a^{2}+b^{2}+c^{2}=: \lambda_{0}^{2} \tag{S14}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}^{\prime}(0)=\frac{a b}{\lambda_{0}}=-\lambda_{2}^{\prime}(0) \tag{S15}
\end{equation*}
$$

The second derivative of the energy is given by

$$
\begin{equation*}
U^{\prime \prime}(\theta)=4 k\left(\lambda_{1}^{\prime \prime}\left(\lambda_{1}-\bar{\lambda}\right)+\lambda_{2}^{\prime \prime}\left(\lambda_{2}-\bar{\lambda}\right)+\left(\lambda_{1}^{\prime}\right)^{2}+\left(\lambda_{2}^{\prime}\right)^{2}\right) . \tag{S16}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lambda_{1}^{\prime \prime}(0)=\lambda_{2}^{\prime \prime}(0)=-\frac{a^{2}}{\lambda_{0}}\left(1+\frac{b^{2}}{\lambda_{0}^{2}}\right), \tag{S17}
\end{equation*}
$$

we find that

$$
\begin{equation*}
U^{\prime \prime}(0)=8 k \frac{a^{2}}{\lambda_{0}}\left(-\left(\lambda_{0}+\frac{b^{2}}{\lambda_{0}}\right) \frac{\left(\lambda_{0}-\bar{\lambda}\right)}{\lambda_{0}}+\frac{b^{2}}{\lambda_{0}}\right) . \tag{S18}
\end{equation*}
$$

After introducing the initial strain (prestrain) ε_{0},

$$
\begin{equation*}
\varepsilon_{0}:=\frac{\lambda_{0}-\bar{\lambda}}{\lambda_{0}}, \tag{S19}
\end{equation*}
$$

we require that

$$
\begin{equation*}
U^{\prime \prime}(0)>0 \tag{S20}
\end{equation*}
$$

obtaining

$$
\begin{equation*}
-\left(\lambda_{0}+\frac{b^{2}}{\lambda_{0}}\right) \varepsilon_{0}+\frac{b^{2}}{\lambda_{0}}>0 \tag{S21}
\end{equation*}
$$

By considering that $\frac{b^{2}}{\lambda_{0}^{2}}=\sin ^{2} \alpha$, with $\alpha=\frac{1}{2} \widehat{E A F}$, this condition can be rewritten as

$$
\begin{equation*}
\varepsilon_{0}<\frac{1}{1+\frac{1}{\sin ^{2} \alpha}}=: \varepsilon_{\mathrm{crit}} \tag{S22}
\end{equation*}
$$

II. EIGHT-NODE UNIT CALCULATIONS

The angles θ_{1} and θ_{2} are the two Lagrangian parameters for the system. At any given configuration, we have

$$
\begin{align*}
& \left(2 h_{c}\left(\theta_{1}\right)\right)^{2}=(2 c)^{2}-2 a^{2}\left(1-\cos 2 \theta_{1}\right) \tag{S23}\\
& \left(2 h_{d}\left(\theta_{2}\right)\right)^{2}=(2 d)^{2}-2 b^{2}\left(1-\cos 2 \theta_{2}\right), \tag{S24}
\end{align*}
$$

with

$$
\begin{equation*}
h_{c}(0)=c, \quad h_{d}(0)=d . \tag{S25}
\end{equation*}
$$

We compute the first and second derivatives of these quantities:

$$
\begin{gather*}
h_{c} h_{c}^{\prime}=-\frac{a^{2}}{2} \sin 2 \theta_{1} ; \tag{S26}\\
h_{d} h_{d}^{\prime}=-\frac{b^{2}}{2} \sin 2 \theta_{2} ; \tag{S27}\\
h_{c} h_{c}^{\prime \prime}=-a^{2} \cos 2 \theta_{1}-h_{c}^{\prime 2} ; \tag{S28}\\
h_{d} h_{d}^{\prime \prime}=-b^{2} \cos 2 \theta_{2}-h_{d}^{\prime 2} ; \tag{S29}
\end{gather*}
$$

(a)

(b)

FIG. S2. The eight-node tensegrity unity: (a) at the configuration with $D_{2 h}$ symmetry, axonometric view; (b) at a configuration with D_{2} symmetry, projection onto the $x-y$ plane with only bars $A B, C D, E F$, and $G H$ shown. The parameters θ_{1} and θ_{2} define the configuration in the two-DOF model.

In particular, for $\left(\theta_{1}, \theta_{2}\right)=(0,0)$ we have:

$$
\begin{gather*}
h_{c}^{\prime}(0)=h_{d}^{\prime}(0)=0 \tag{S30}\\
h_{c}^{\prime \prime}(0)=-\frac{a^{2}}{c} \tag{S31}\\
h_{d}^{\prime \prime}(0)=-\frac{b^{2}}{d} \tag{S32}
\end{gather*}
$$

As to the lengths of the springs, they are given by

$$
\begin{align*}
& \lambda_{1}^{2}\left(\theta_{1}, \theta_{2}\right)=a^{2}+b^{2}+\left(h_{c}\left(\theta_{1}\right)-h_{d}\left(\theta_{2}\right)\right)^{2}-2 a b \cos \left(\frac{\pi}{2}+\theta_{2}-\theta_{1}\right) \tag{S33}\\
& \lambda_{2}^{2}\left(\theta_{1}, \theta_{2}\right)=a^{2}+b^{2}+\left(h_{c}\left(\theta_{1}\right)-h_{d}\left(\theta_{2}\right)\right)^{2}-2 a b \cos \left(\frac{\pi}{2}-\theta_{2}+\theta_{1}\right) \tag{S34}
\end{align*}
$$

Again, we compute the partial derivatives of these quatities:
$2 \lambda_{1} \lambda_{1,1}=2\left(h_{c}-h_{d}\right) h_{c}^{\prime}-2 a b \cos \left(\theta_{2}-\theta_{1}\right) ;$
$2 \lambda_{1} \lambda_{1,11}=2\left(h_{c}-h_{d}\right) h_{c}^{\prime \prime}+2 h_{c}^{\prime 2}-2 a b \sin \left(\theta_{2}-\theta_{1}\right)-2\left(\lambda_{1,1}\right)^{2} ;$
$2 \lambda_{1} \lambda_{1,12}=-2 h_{c}^{\prime} h_{d}^{\prime}+2 a b \sin \left(\theta_{2}-\theta_{1}\right)-2 \lambda_{1,2} \lambda_{1,1} ;$
$2 \lambda_{1} \lambda_{1,2}=-2\left(h_{c}-h_{d}\right) h_{d}^{\prime}+2 a b \cos \left(\theta_{2}-\theta_{1}\right) ;$
$2 \lambda_{1} \lambda_{1,22}=-2\left(h_{c}-h_{d}\right) h_{d}^{\prime \prime}+2 h_{d}^{\prime 2}-2 a b \sin \left(\theta_{2}-\theta_{1}\right)-2\left(\lambda_{1,2}\right)^{2} ;$
$2 \lambda_{2} \lambda_{2,1}=2\left(h_{c}-h_{d}\right) h_{c}^{\prime}+2 a b \cos \left(-\theta_{2}+\theta_{1}\right) ;$
$2 \lambda_{2} \lambda_{2,11}=2\left(h_{c}-h_{d}\right) h_{c}^{\prime \prime}+2 h_{c}^{\prime 2}-2 a b \sin \left(-\theta_{2}+\theta_{1}\right)-2\left(\lambda_{2,1}\right)^{2} ;$
$2 \lambda_{2} \lambda_{2,12}=-2 h_{c}^{\prime} h_{d}^{\prime}+2 a b \sin \left(-\theta_{2}+\theta_{1}\right)-2 \lambda_{2,2} \lambda_{2,1} ;$
$2 \lambda_{2} \lambda_{2,2}=-2\left(h_{c}-h_{d}\right) h_{d}^{\prime}-2 a b \cos \left(-\theta_{2}+\theta_{1}\right) ;$
$2 \lambda_{2} \lambda_{2,22}=-2\left(h_{c}-h_{d}\right) h_{d}^{\prime \prime}-2 h_{d}^{\prime 2}-2 a b \sin \left(-\theta_{2}+\theta_{1}\right)-2\left(\lambda_{2,2}\right)^{2}$.

For $\left(\theta_{1}, \theta_{2}\right)=(0,0)$ we have:

$$
\begin{align*}
& \lambda_{1}^{2}(0,0)=\lambda_{2}^{2}(0,0)=\lambda_{0}^{2}=a^{2}+b^{2}+(c-d)^{2} \\
& \lambda_{1,1}(0,0)=\lambda_{2,2}(0,0)=-\frac{a b}{\lambda_{0}} \\
& \lambda_{1,2}(0,0)=\lambda_{2,1}(0,0)=\frac{a b}{\lambda_{0}} \\
& \lambda_{1,11}(0,0)=\lambda_{2,11}(0,0)=\frac{1}{\lambda_{0}}\left(-\frac{a^{2}}{c}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) ; \tag{S35}\\
& \lambda_{1,22}(0,0)=\lambda_{2,22}(0,0)=\frac{1}{\lambda_{0}}\left(\frac{b^{2}}{d}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) ; \\
& \lambda_{1,12}(0,0)=\lambda_{2,12}(0,0)=\frac{a^{2} b^{2}}{\lambda_{0}^{3}} .
\end{align*}
$$

On denoting by $\bar{\lambda}$ the common rest-length of the springs, the elastic energy is given by

$$
\begin{equation*}
U\left(\theta_{1}, \theta_{2}\right)=2 k\left(\left(\lambda_{1}-\bar{\lambda}\right)^{2}+\left(\lambda_{2}-\bar{\lambda}\right)^{2}\right) . \tag{S36}
\end{equation*}
$$

Equilibrium configurations can be obtained as stationary points of the energy, by setting its partial derivatives equal to zero. We have:

$$
\begin{align*}
& U, 1=4 k\left(\lambda_{1,1}\left(\lambda_{1}-\bar{\lambda}\right)+\lambda_{2,1}\left(\lambda_{2}-\bar{\lambda}\right)\right)=0 \tag{S37}\\
& U_{, 2}=4 k\left(\lambda_{1,2}\left(\lambda_{1}-\bar{\lambda}\right)+\lambda_{2,2}\left(\lambda_{2}-\bar{\lambda}\right)\right)=0 \tag{S38}
\end{align*}
$$

where $(\cdot)_{, i}$ denotes the partial derivative with respect to $\theta_{i}(i=1,2)$. It is easy to see that $\left(\theta_{1}, \theta_{2}\right)=$ $(0,0)$ is an equilibrium configuration. The second partial derivatives of the energy are

$$
\begin{align*}
& U, 11=4 k\left(\lambda_{1,11}\left(\lambda_{1}-\bar{\lambda}\right)+\lambda_{2,11}\left(\lambda_{2}-\bar{\lambda}\right)+\left(\lambda_{1,1}\right)^{2}+\left(\lambda_{2,1}\right)^{2}\right) \tag{S39}\\
& U, 22=4 k\left(\lambda_{1,22}\left(\lambda_{1}-\bar{\lambda}\right)+\lambda_{2,22}\left(\lambda_{2}-\bar{\lambda}\right)+\left(\lambda_{1,2}\right)^{2}+\left(\lambda_{2,2}\right)^{2}\right) \tag{S40}\\
& U, 12=4 k\left(\lambda_{1,12}\left(\lambda_{1}-\bar{\lambda}\right)+\lambda_{2,12}\left(\lambda_{2}-\bar{\lambda}\right)+\lambda_{1,1} \lambda_{1,2}+\lambda_{2,1} \lambda_{2,2}\right) \tag{S41}
\end{align*}
$$

For $\left(\theta_{1}, \theta_{2}\right)=(0,0)$ we have:

$$
\begin{gather*}
U,{ }_{11}(0,0)=8 k\left(\left(-\frac{a^{2}}{c}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) \frac{\lambda_{0}-\bar{\lambda}}{\lambda_{0}}+\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) \tag{S42}\\
U, 22(0,0)=8 k\left(\left(\frac{b^{2}}{d}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) \frac{\lambda_{0}-\bar{\lambda}}{\lambda_{0}}+\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) \tag{S43}\\
U, 12(0,0)=8 k\left(\frac{a^{2} b^{2}}{\lambda_{0}^{2}} \frac{\lambda_{0}-\bar{\lambda}}{\lambda_{0}}-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) \tag{S44}
\end{gather*}
$$

The Hessian of the energy, computed in $\left(\theta_{1}, \theta_{2}\right)=(0,0)$, can be written as

$$
\begin{equation*}
\partial_{\mathbf{p}}^{2} U=\mathbf{K}_{T}=\mathbf{K}_{M}+\mathbf{K}_{G} \tag{S45}
\end{equation*}
$$

with

$$
\left[\mathbf{K}_{G}\right]=8 k \frac{\lambda_{0}-\bar{\lambda}}{\lambda_{0}}\left[\begin{array}{cc}
-\frac{a^{2}}{c}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}} & \frac{a^{2} b^{2}}{\lambda_{0}^{2}} \\
\frac{a^{2} b^{2}}{\lambda_{0}^{2}} & \frac{b^{2}}{d}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}
\end{array}\right],
$$

and

$$
\left[\mathbf{K}_{M}\right]=8 k \frac{a^{2} b^{2}}{\lambda_{0}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Internal mechanisms consistent with the D_{2} symmetry have the form

$$
[\Delta \theta]=\bar{\theta}\left[\begin{array}{l}
1 \tag{S46}\\
1
\end{array}\right]
$$

with $\bar{\theta}$ an arbitrary scalar.
The prestress stability condition,

$$
\begin{equation*}
\mathbf{K}_{G} \Delta \theta \cdot \Delta \theta>0 \tag{S47}
\end{equation*}
$$

gives

$$
\begin{equation*}
8 k \varepsilon_{0}(c-d)\left(-\frac{a^{2}}{c}+\frac{b^{2}}{d}\right)>0 \tag{S48}
\end{equation*}
$$

where $\varepsilon_{0}=\left(\lambda_{0}-\bar{\lambda}\right) / \lambda_{0}$. Since $c>d$, we have

$$
\begin{equation*}
\frac{b^{2}}{d}>\frac{a^{2}}{c} \tag{S49}
\end{equation*}
$$

or, by introducing the dimensionless parameters

$$
\begin{equation*}
\delta:=\frac{b}{a}, \quad \gamma:=\frac{d}{c}, \tag{S50}
\end{equation*}
$$

we can rewrite the prestress stability condition as

$$
\begin{equation*}
\gamma<\delta^{2} \tag{S51}
\end{equation*}
$$

We rewrite the component of the stiffness matrix, up to a multiplicative positive constant, as follows:

$$
\begin{gather*}
\left(\mathbf{K}_{T}\right)_{11}=\left(-\frac{a^{2}}{c}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) \varepsilon_{0}+\frac{a^{2} b^{2}}{\lambda_{0}^{2}} \tag{S52}\\
\left(\mathbf{K}_{T}\right)_{22}=\left(\frac{b^{2}}{d}(c-d)-\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\right) \varepsilon_{0}+\frac{a^{2} b^{2}}{\lambda_{0}^{2}} \tag{S53}\\
\left(\mathbf{K}_{T}\right)_{12}=\frac{a^{2} b^{2}}{\lambda_{0}^{2}} \varepsilon_{0}-\frac{a^{2} b^{2}}{\lambda_{0}^{2}} \tag{S54}
\end{gather*}
$$

By setting

$$
\begin{equation*}
A=\frac{a^{2} b^{2}}{\lambda_{0}^{2}}\left(1-\varepsilon_{0}\right), \quad B=-\frac{a^{2}}{c}(c-d) \varepsilon_{0}, \quad C=\frac{b^{2}}{d}(c-d) \varepsilon_{0} \tag{S55}
\end{equation*}
$$

we can compute the eigenvalues as the solutions ξ of the sequation

$$
\operatorname{det}\left[\begin{array}{cc}
A+B-\xi & -A \tag{S56}\\
-A & A+C-\xi
\end{array}\right]=0
$$

obtaining

$$
\begin{gather*}
\xi^{2}-(2 A+B+C) \xi+A B+A C+B C=0 \tag{S57}\\
2 \xi=2 A+B+C \pm \sqrt{4 A^{2}+B^{2}+C^{2}-2 B C} \tag{S58}
\end{gather*}
$$

By requiring the lowest eigenvalue to be positive, we have

$$
\begin{equation*}
(2 A+B+C)^{2}>4 A^{2}+B^{2}+C^{2}-2 B C \quad \Rightarrow \quad B C+A(B+C)>0 . \tag{S59}
\end{equation*}
$$

By considering that $\varepsilon_{0}>0$, the condition above amounts to requiring that

$$
\begin{equation*}
-\varepsilon_{0}\left(\frac{c-d}{c d}+\frac{1}{\lambda_{0}^{2}}\left(\frac{b^{2}}{d}-\frac{a^{2}}{c}\right)\right)+\frac{1}{\lambda_{0}^{2}}\left(\frac{b^{2}}{d}-\frac{a^{2}}{c}\right)>0 \tag{S60}
\end{equation*}
$$

or,

$$
\begin{equation*}
\varepsilon_{0}<\frac{1}{1+\frac{1-\gamma}{1-\frac{\gamma}{\delta^{2}}} \frac{1}{\sin ^{2} \alpha}}=: \varepsilon_{\text {crit }} \tag{S61}
\end{equation*}
$$

where $\sin \alpha=b / \lambda_{0}$, with $\alpha=\frac{1}{2} \widehat{E A F}$.

III. POLIGONAL-BASE UNITS

The present calculations can be extended to analogous tensegrity units with polygonal base, such as those shown in Fig S3.

FIG. S3. Units with triangular base.

