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I. SIX-NODE UNIT CALCULATIONS

FIG. S1. The six-node tensegrity unit: (a) at the configuration with D2h symmetry, axonometric view; (b)

at a configuration with D2 symmetry, projection onto the x-y plane with only bars AB, CD, and EF shown.

The parameter θ defines the configuration in the single-DOF model.

We make use of the formula

|PQ|2 = r2
P + r2

Q−2rPrQ cos(ϕP−ϕQ)+(zP− zQ)
2

for computing the distance between two points in the cylindrical coordinate system, {r,ϕ,z} cen-

tered on the vertical symmetry axis.

We define 2h(θ) = zA− zC = zB− zD, with h(0) = c. We have

|AD|2 = (2c)2 = (2h(θ))2 +2a2(1− cos(2θ)), (S1)

so that

h2(θ) = c2 +
a2

2
(cos(2θ)−1). (S2)

As to the lengths of the springs, we have

λ
2
1 (θ) = a2 +b2−2abcos

(
π

2
+θ

)
+h2(θ), (S3)

λ
2
2 (θ) = a2 +b2−2abcos

(
π

2
−θ

)
+h2(θ), (S4)
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substituting (S2) we obtain

λ1(θ)
2 = c2 +b2 +

a2

2
(1+ cos(2θ))−2abcos

(
π

2
+θ

)
; (S5)

λ2(θ)
2 = c2 +b2 +

a2

2
(1+ cos(2θ))−2abcos

(
π

2
−θ

)
. (S6)

The first and second derivatives of these quantities are

2λ1λ
′
1 =−a2 sin(2θ)+2abcosθ , (S7)

2λ2λ
′
2 =−a2 sin(2θ)−2abcosθ , (S8)

2λ1λ
′′
1 =−2a2 cos(2θ)−2absinθ −2(λ ′1)

2, (S9)

2λ2λ
′′
2 =−2a2 cos(2θ)+2absinθ −2(λ ′2)

2. (S10)

The potential energy of the system is given by the elastic energy

U(θ) = 2k
(
(λ1−λ )2 +(λ2−λ )2

)
, (S11)

in which λ is the common rest-length of the springs. We compute the first derivative and set it

equal to zero to find the stationary points; we have:

U ′(θ) = 4k
(

λ
′
1(λ1−λ )+λ

′
2(λ2−λ )

)
= 0, (S12)

obtaining the condition

λ
′
1(λ1−λ ) =−λ

′
2(λ2−λ ). (S13)

We see that θ = 0 is a stationary point for the energy, since

λ1(0)2 = λ2(0)2 = a2 +b2 + c2 =: λ
2
0 , (S14)

and

λ
′
1(0) =

ab
λ0

=−λ
′
2(0). (S15)

The second derivative of the energy is given by

U ′′(θ) = 4k
(

λ
′′
1 (λ1−λ )+λ

′′
2 (λ2−λ )+(λ ′1)

2 +(λ ′2)
2
)
. (S16)

Since

λ
′′
1 (0) = λ

′′
2 (0) =−

a2

λ0

(
1+

b2

λ 2
0

)
, (S17)
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we find that

U ′′(0) = 8k
a2

λ0

(
−
(

λ0 +
b2

λ0

)(λ0−λ )

λ0
+

b2

λ0

)
. (S18)

After introducing the initial strain (prestrain) ε0,

ε0 :=
λ0−λ

λ0
, (S19)

we require that

U ′′(0)> 0, (S20)

obtaining

−
(

λ0 +
b2

λ0

)
ε0 +

b2

λ0
> 0. (S21)

By considering that b2

λ 2
0
= sin2

α , with α = 1
2 ÊAF , this condition can be rewritten as

ε0 <
1

1+
1

sin2
α

=: εcrit, (S22)

II. EIGHT-NODE UNIT CALCULATIONS

The angles θ1 and θ2 are the two Lagrangian parameters for the system. At any given configu-

ration, we have

(2hc(θ1))
2 = (2c)2−2a2(1− cos2θ1); (S23)

(2hd(θ2))
2 = (2d)2−2b2(1− cos2θ2), (S24)

with

hc(0) = c, hd(0) = d. (S25)

We compute the first and second derivatives of these quantities:

hch′c =−
a2

2
sin2θ1; (S26)

hdh′d =−b2

2
sin2θ2; (S27)

hch′′c =−a2 cos2θ1−h′2c ; (S28)

hdh′′d =−b2 cos2θ2−h′2d ; (S29)
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FIG. S2. The eight-node tensegrity unity: (a) at the configuration with D2h symmetry, axonometric view;

(b) at a configuration with D2 symmetry, projection onto the x-y plane with only bars AB, CD, EF , and GH

shown. The parameters θ1 and θ2 define the configuration in the two-DOF model.

In particular, for (θ1,θ2) = (0,0) we have:

h′c(0) = h′d(0) = 0; (S30)

h′′c (0) =−
a2

c
; (S31)

h′′d(0) =−
b2

d
; (S32)

As to the lengths of the springs, they are given by

λ
2
1 (θ1,θ2) = a2 +b2 +(hc(θ1)−hd(θ2))

2−2abcos
(

π

2
+θ2−θ1

)
; (S33)

λ
2
2 (θ1,θ2) = a2 +b2 +(hc(θ1)−hd(θ2))

2−2abcos
(

π

2
−θ2 +θ1

)
. (S34)

Again, we compute the partial derivatives of these quatities:

2λ1λ1,1 = 2(hc−hd)h′c−2abcos(θ2−θ1);
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2λ1λ1,11 = 2(hc−hd)h′′c +2h′2c −2absin(θ2−θ1)−2(λ1,1)
2;

2λ1λ1,12 =−2h′ch′d +2absin(θ2−θ1)−2λ1,2λ1,1;

2λ1λ1,2 =−2(hc−hd)h′d +2abcos(θ2−θ1);

2λ1λ1,22 =−2(hc−hd)h′′d +2h′2d −2absin(θ2−θ1)−2(λ1,2)
2;

2λ2λ2,1 = 2(hc−hd)h′c +2abcos(−θ2 +θ1);

2λ2λ2,11 = 2(hc−hd)h′′c +2h′2c −2absin(−θ2 +θ1)−2(λ2,1)
2;

2λ2λ2,12 =−2h′ch′d +2absin(−θ2 +θ1)−2λ2,2λ2,1;

2λ2λ2,2 =−2(hc−hd)h′d−2abcos(−θ2 +θ1);

2λ2λ2,22 =−2(hc−hd)h′′d−2h′2d −2absin(−θ2 +θ1)−2(λ2,2)
2.

For (θ1,θ2) = (0,0) we have:

λ
2
1 (0,0) = λ

2
2 (0,0) = λ

2
0 = a2 +b2 +(c−d)2;

λ1,1(0,0) = λ2,2(0,0) =−
ab
λ0

;

λ1,2(0,0) = λ2,1(0,0) =
ab
λ0

;

λ1,11(0,0) = λ2,11(0,0) =
1
λ0

(
−a2

c
(c−d)− a2b2

λ 2
0

)
;

λ1,22(0,0) = λ2,22(0,0) =
1
λ0

(b2

d
(c−d)− a2b2

λ 2
0

)
;

λ1,12(0,0) = λ2,12(0,0) =
a2b2

λ 3
0

.

(S35)

On denoting by λ the common rest-length of the springs, the elastic energy is given by

U(θ1,θ2) = 2k
(
(λ1−λ )2 +(λ2−λ )2

)
. (S36)
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Equilibrium configurations can be obtained as stationary points of the energy, by setting its partial

derivatives equal to zero. We have:

U,1= 4k
(

λ1,1(λ1−λ )+λ2,1(λ2−λ )
)
= 0, (S37)

U,2= 4k
(

λ1,2(λ1−λ )+λ2,2(λ2−λ )
)
= 0, (S38)

where ( ·),i denotes the partial derivative with respect to θi (i= 1,2). It is easy to see that (θ1,θ2) =

(0,0) is an equilibrium configuration. The second partial derivatives of the energy are

U,11= 4k
(

λ1,11(λ1−λ )+λ2,11(λ2−λ )+(λ1,1)
2 +(λ2,1)

2
)
, (S39)

U,22= 4k
(

λ1,22(λ1−λ )+λ2,22(λ2−λ )+(λ1,2)
2 +(λ2,2)

2
)
, (S40)

U,12= 4k
(

λ1,12(λ1−λ )+λ2,12(λ2−λ )+λ1,1λ1,2 +λ2,1λ2,2

)
. (S41)

For (θ1,θ2) = (0,0) we have:

U,11 (0,0) = 8k

((
−a2

c
(c−d)− a2b2

λ 2
0

)
λ0−λ

λ0
+

a2b2

λ 2
0

)
, (S42)

U,22 (0,0) = 8k

(
(
b2

d
(c−d)− a2b2

λ 2
0

)
λ0−λ

λ0
+

a2b2

λ 2
0

)
, (S43)

U,12 (0,0) = 8k
(a2b2

λ 2
0

λ0−λ

λ0
− a2b2

λ 2
0

)
. (S44)

The Hessian of the energy, computed in (θ1,θ2) = (0,0), can be written as

∂
2
pU = KT = KM +KG, (S45)

with

[KG] = 8k
λ0−λ

λ0

 −a2

c (c−d)− a2b2

λ 2
0

a2b2

λ 2
0

a2b2

λ 2
0

b2

d (c−d)− a2b2

λ 2
0

 ,
and

[KM] = 8k
a2b2

λ0

 1 −1

−1 1

 .
Internal mechanisms consistent with the D2 symmetry have the form

[∆θ ] = θ̄

1

1

 , (S46)
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with θ̄ an arbitrary scalar.

The prestress stability condition,

KG ∆θ ·∆θ > 0, (S47)

gives

8k ε0(c−d)(−a2

c
+

b2

d
)> 0, (S48)

where ε0 = (λ0−λ )/λ0. Since c > d, we have

b2

d
>

a2

c
, (S49)

or, by introducing the dimensionless parameters

δ :=
b
a
, γ :=

d
c
, (S50)

we can rewrite the prestress stability condition as

γ < δ
2 . (S51)

We rewrite the component of the stiffness matrix, up to a multiplicative positive constant, as

follows:

(KT )11 =
(
−a2

c
(c−d)− a2b2

λ 2
0

)
ε0 +

a2b2

λ 2
0

, (S52)

(KT )22 =
(b2

d
(c−d)− a2b2

λ 2
0

)
ε0 +

a2b2

λ 2
0

, (S53)

(KT )12 =
a2b2

λ 2
0

ε0−
a2b2

λ 2
0

. (S54)

By setting

A =
a2b2

λ 2
0

(1− ε0) , B =−a2

c
(c−d)ε0 , C =

b2

d
(c−d)ε0 , (S55)

we can compute the eigenvalues as the solutions ξ of the sequation

det

 A+B−ξ −A

−A A+C−ξ

= 0 , (S56)

obtaining

ξ
2− (2A+B+C)ξ +AB+AC+BC = 0 , (S57)

2ξ = 2A+B+C±
√

4A2 +B2 +C2−2BC . (S58)
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By requiring the lowest eigenvalue to be positive, we have

(2A+B+C)2 > 4A2 +B2 +C2−2BC ⇒ BC+A(B+C)> 0 . (S59)

By considering that ε0 > 0, the condition above amounts to requiring that

−ε0

(
c−d
cd

+
1

λ 2
0

(
b2

d
− a2

c

))
+

1
λ 2

0

(
b2

d
− a2

c

)
> 0 , (S60)

or,

ε0 <
1

1+
1− γ

1− γ

δ 2

1
sin2

α

=: εcrit , (S61)

where sinα = b/λ0, with α = 1
2 ÊAF .

III. POLIGONAL-BASE UNITS

The present calculations can be extended to analogous tensegrity units with polygonal base,

such as those shown in Fig S3.

FIG. S3. Units with triangular base.
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