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a b s t r a c t 

Block-and-hole polyhedra can be derived from a bar-joint triangulation of a polyhedron by a stepwise 

construction: select a set of non-overlapping disks defined by edge-cycles of the triangulation of length 

at least 4; then modify the interior of each disk by an addition or deletion operation on vertices and 

edges so that it becomes either a rigid block or a hole. The construction has a body-hinge analogue. 

Models of many classical objects such as the Sarrus linkage can be modelled by block-and-hole polyhedra. 

Symmetry extensions of counting rules for mobility (the balance of mechanisms and states of self-stress) 

are obtained for the bar-joint and body-hinge models. The extended rules detect mechanisms in many 

cases where pure counting would predict an isostatic framework. Relations between structures where 

blocks and holes are swapped have a simple form. Examples illustrate the finer classification of isostatic 

and near-isostatic block-and-hole polyhedra achievable by using symmetry. 

The present approach also explains a puzzle in standard models of mobility. In the bar-joint model, a 

fully triangulated polyhedron is isostatic, but in a body-hinge version it is heavily overconstrained. When 

the bodies are panels with hinge lines intersecting at vertices, the overconstraints can be explained in 

local mechanical terms, with a direct symmetry description. A generalisation of the symmetry formula 

explains the extra states of self-stress in panel-hinge models of block-and-hole polyhedra. 

© 2018 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

As structures poised between mobility and over-bracing, just-

rigid isostatic frameworks are of perennial interest in engineering

applications ( Maxwell, 1876; Bujakas and Rybakova, 1998; Stew-

art, 1965; Miura et al., 1985; Baker and Friswell, 2009 ). Fully trian-

gulated (strictly convex) polyhedra are guaranteed by the Cauchy–

Dehn Theorem to be isostatic ( Cauchy, 1813; Dehn, 1916 ). Further-

more, Gluck showed in 1975 that the graph of any triangulated

sphere is generically isostatic in 3-space ( Gluck, 1975 ). Bar-joint

frameworks based on triangulated spheres therefore provide good

starting points for exploration of isostatic and related structures.

Indeed, removal of just one edge of such a framework is sufficient

to give a finite mechanism ( Maxwell, 1890 ). 

One class of structures currently attracting attention in the lit-

erature of rigidity is that of block-and-hole frameworks ( Finbow-

Singh et al., 2012; Finbow-Singh and Whiteley, 2013; Cruickshank
� The work of Bernd Schulze was supported by EPSRC First Grant EP/M013642/1 . 
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t al., 2017 ), which can model situations such as geodesic domes

ierced by windows, or open-ended tubular tower-like struc-

ures. Mathematical work has concentrated on general combina-

orial characterisations of rigidity ( Whiteley, 1988; Finbow-Singh

nd Whiteley, 2013; Cruickshank et al., 2017 ). Work on appli-

ations needs to reach an understanding of particular geometric

ealisations of such structures, especially those with non-trivial

ymmetries. In these cases, pure counting does not always re-

eal mechanisms, and indeed other types of ‘perforated polyhedra’

 Fowler et al., 2016 ) may possess unexpected mechanisms that are

nly understood by use of symmetry-extended counting rules. 

Here we extend ‘counting with symmetry’ ( Fowler and Guest,

0 0 0; Guest and Fowler, 20 05; Connelly et al., 2009 ) to the mobil-

ty of block-and-hole frameworks, and show that this approach can

ive useful information on candidates for isostatic frameworks, and

n properties of structures related by swapping blocks and holes

 Finbow-Singh et al., 2012 ). 

We work with block-and-hole polyhedra , which we take here to

e structures derived from a bar-joint triangulation of the sphere

y selecting a set of non-overlapping disks defined by cycles of

ength at least four composed of edges of the triangulation, fol-

owed by modification of each disk so that it becomes either a
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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hole block

Fig. 1. Construction of a hole and a rigid block (a panel) from a bar-joint triangu- 

lation of the sphere. 
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igid block or a hole. Edges making up a chosen cycle are not

ecessarily coplanar. With our definition, we are choosing to con-

ider the structures that can be formed by a series of independent

ole-punching and block-rigidifying operations. This simplifies the

ymmetry arguments and allows us to reach a general equation for

obility of block-and-hole polyhedra (because vertices and edges

t hole boundaries are restricted to trivial rotational symmetries).

e focus on ‘counting-isostatic’ block-and-hole polyhedra, where

he standard mobility count m − s is equal to zero. However, the

pproach is equally able to describe over-braced or under-braced

lock-and-hole systems, where a swap of blocks and holes simply

hanges the sign of the mobility count. In the symmetry-extended

ormulation, this swap may have consequences for the finite or in-

nitesimal nature of predicted mechanisms. 

Block-and-hole polyhedra may take various forms, as, for ex-

mple, panel-hinge frameworks ( Katoh and Tanigawa, 2011 ) in the

ase where the vertices of each block are coplanar and holes do

ot share any vertex. In such a structure, blocks are flat panels

hat are connected in pairs along edges which function as hinges

hat allow a rotational motion of one panel around the other. Use-

ul panel-hinge physical models of block-and-hole polyhedra can

e created with commercial kits ( Polydron, 2016 ), as shown in fig-

res in the present paper. Switching between bar-joint and panel-

inge models brings to light an interesting “puzzle”: the apparently

quivalent panel-hinge model has more states of self-stress. We ex-

lore the origin of these states, and show that they can be counted,

ssigned symmetries and explained with a simple localised me-

hanical model. 

The structure of the paper is as follows. In Section 2 a bar-

oint model of block-and-hole polyhedra is described in terms of

perations performed on an initially fully triangulated framework.

 symmetry-extended counting rule is given for the mobility of

he bar-joint model. In Section 3 the corresponding panel-hinge

odel is presented and the symmetry-extended counting rule is

erived and the puzzling ‘extra’ states of self-stress are explained.

n Section 4 , examples bring out the rich behaviour of different

inds of block-and-hole polyhedra, all undetected by scalar count-

ng. Finally, in Section 5 we discuss briefly how the methods of this

aper may be applied to other types of block-and-hole structures. 

. A bar-joint model for block-and-hole polyhedra 

In our approach, we model any given block-and-hole polyhe-

ron by a series of successive applications of operations of two

ypes to a bar-joint triangulation of a topological sphere (which is

ot necessarily convex) ( Fig. 1 ). 

One operation generates a hole by removal of a vertex v h along

ith its incident edges from the original triangulation. The other

peration generates a block by identifying a vertex v of degree
b 
 ( v b ) ≥ 4 in the original triangulation and duplicating it (coning

ver the neighbours of v b ); this forms a [ d ( v b )]-bipyramid, which

s guaranteed to be isostatic in generic geometry by Gluck’s theo-

em ( Gluck, 1975 ). We choose a position for the duplicate vertex

and slightly perturb the position of v b if necessary) in such a way

hat the coned system is in fact isostatic in 3-space. 

.1. Scalar and symmetry-extended counting rules 

A 3D bar-joint framework with b bars and j joints has m mech-

nisms and s states of self-stress and obeys the Maxwell Rule

 Maxwell, 1864; Calladine, 1978 ). 

 − s = 3 j − b − 6 . (1)

In the symmetry extension ( Fowler and Guest, 20 0 0 ) for a bar-

oint framework with point group G, the counting equation be-

omes 

(m ) − �(s ) = �( j) × �T − �(b) − (�T + �R ) , (2)

r, in terms of the underlying graph with v vertices and e edges: 

(m ) − �(s ) = �(v ) × �T − �(e ) − (�T + �R ) . (3)

n the terminology of mathematical group theory, each � in these

quations is the character of a group representation of G. A group

epresentation of G is a homomorphism from G to the general lin-

ar group of some vector space, and the character of the repre-

entation associates to each group element the trace of the corre-

ponding matrix. In applied group theory, what is called a char-

cter in the mathematical formulation is usually called a repre-

entation, and the trace under an operation is called the charac-

er, and this is the terminology we will use below. In this applied

ontext, the Maxwell Rule (1) is simply the character of the sym-

etry equation (2) under the identity operation. For point groups

n 3-space and their irreducible representations, we will use the

tandard Schoenflies and Mulliken notations, respectively ( Altmann

nd Herzig, 1994; Atkins et al., 1970 ). 

In our equations, �( m ) and �( s ) are the representations of the

echanisms and states of self-stress of the framework. For any set

f objects q , �( q ) is the permutation representation of q ; that is,

he entry of the representation �( q ) corresponding to a group el-

ment x ∈ G is equal to the number of objects in the set that re-

ain unshifted by the symmetry operation x . In addition, �T and

R are three-dimensional translational and rotational representa-

ions, respectively. Two representations that will be useful later

re �0 and �ε , respectively the totally symmetric and determinan-

al representations: �0 is the symmetry of an object that is pre-

erved under all symmetry operations; �ε is the symmetry of an

bject that is preserved under all proper, and reversed under all

mproper symmetry operations. Useful relations are �ε × �ε = �0 

nd �R = �T × �ε . 

All the representations in (2) and (3) can be computed by stan-

ard manipulations of the character table of the group G ( Altmann

nd Herzig, 1994; Atkins et al., 1970 ). Note that �(m ) − �(s ) is

ypically a reducible representation, i.e., a linear combination in

hich those irreducible representations that occur with positive

oefficients describe symmetries of mechanisms, and those with

egative coefficients describe symmetries of states of self-stress. 

The equation m − s = 0 is a necessary but not sufficient condi-

ion for a structure to be isostatic. (A structure can have mecha-

isms and states of self-stress that cancel in the count.) The sym-

etry extension can be seen as a set of additional necessary con-

itions, one for each class of operations in the point group. This is

ypically more informative than the scalar rule, which is just the

haracter of (2) under one operation. We refer to those mecha-

isms and states of self-stress that cannot be detected using the
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scalar rule (1) but are revealed by the symmetry-extended count-

ing rule (2) as symmetry-detectable . 

2.2. Symmetry aspects of the construction 

The construction described above yields a bar-joint framework

that differs from the original triangulation in two obvious respects:

the presence of blocks and of holes. In symmetry terms, the effect

in (3) of deleting a set of vertices { v h } and their incident edges

{ e h } at the hole sites is to subtract a term �(v h ) × �T − �(e h )

from �(m ) − �(s ) . Likewise, the addition of vertices { v b } and their

edges { e b } at the block sites adds a term �(v b ) × �T − �(e b ) to

�(m ) − �(s ) . Typically the process of creation of blocks and holes

will reduce the overall symmetry; calculations of the various repre-

sentations are understood to take place in the smaller point group

appropriate to the block-and-hole system. 

Given that by construction we start from an isostatic structure,

the total mobility of the bar-joint block-and-hole structure is given

by the difference term: 

[�(m ) − �(s )] BH = [�(v b ) − �(v h )] × �T + [�(e h ) − �(e b )] . (4)

This is our main working equation. It will be used to deduce the

mobility properties of all the various block-and-hole structures to

be described in the examples below. 

Some remarks follow straightforwardly. 

(i) The trace of symmetry equation (4) under the identity oper-

ation is simply the scalar count, and hence 

(m − s ) BH = 3(| v b | − | v h | ) + (| e h | − | e b | ) , 
or in terms of vertices v h 1 , . . . , v b 1 , . . . with degrees

d h 1 , . . . , d b 1 , . . . , 

(m − s ) BH = 

| v h | ∑ 

i =1 

(d h i − 3) −
| v b | ∑ 

i =1 

(d b i − 3) , 

consistent with the fact that the structure would retain its

isostatic count m − s = 0 if all blocks and holes were based

on triangles: the isostatic count persists for all symmetry

operations, since �(v X ) × �T = �(e X ) for each set of triva-

lent vertices with their associated edges (X = b or h), and

hence (�(m ) − �(s )) BH vanishes in this case. 

(ii) As much of the interest in block-and-hole frameworks lies in

their potential as isostatic structures, it seems useful to de-

fine a notion of balance for bar-joint block-and-hole frame-

works. 

At the level of scalar counting, a bar-joint block-and-hole

framework with a zero count (m − s ) BH will be called

counting-isostatic . The count of zero can be achieved in var-

ious ways. A case in which | v h | = | v b | and | e h | = | e b | will

be called counting-balanced . The special case in which every

hole vertex has a corresponding block vertex of the same

degree will be called strongly counting-balanced . 

At the level of counting with symmetry, more situations

are possible. Not all structures with m − s = 0 have �(m ) −
�(s ) = 0 . A zero representation (�(m ) − �(s )) BH implies

that neither mechanisms nor states of self-stress are de-

tectable by symmetry. We will call this case symmetry-

counting-isostatic , or symmetry-isostatic for short. A way to

achieve vanishing of (�(m ) − �(s )) BH is to have �(v b ) =
�(v h ) and �(e b ) = �(e h ) . This case is symmetry-counting-

balanced , or symmetry-balanced . A specific way to ensure

this symmetry balance is to start with a counting-balanced

structure and to choose { v h } and { v b } such that the two

sets of vertices and the two sets of edges { e h } and { e b }

span the same combinations of orbits of the point group
of the derived structure ( Fowler and Quinn, 1986 ). By anal-

ogy with the symmetry-free terminology, we will call this

case strongly symmetry-counting-balanced , or simply strongly

symmetry-balanced . 

The point of this hierarchy of definitions is that count-

ing with symmetry is intrinsically more discriminating than

scalar counting. In particular: 

(a) Symmetry-isostatic implies counting-isostatic; 

(b) Symmetry-balanced implies counting-balanced; 

(c) Strongly symmetry-balanced implies strongly counting-

balanced. 

Within each stack of scalar or symmetry counting, strongly

balanced implies balanced implies isostatic. The gap be-

tween symmetry and simple counting at each level can lead

to cases where a bar-joint framework is isostatic according

to counting but has symmetry-detectable mechanisms and

states of self-stress (see examples below). 

(iii) Both symmetry-extended and scalar mobility equations are

evidently anti-symmetric with respect to exchange of blocks

and holes. With the scalar equation, the prediction is sim-

ply that the excess of mechanisms over states of self-stress

will be reversed. With the symmetry-extended equation, the

prediction is more subtle: symmetries of excess mechanisms

and states of self-stress will be swapped and this may lead

to physically distinguishable consequences. Given the sym-

metry rules governing finiteness of mechanisms ( Guest and

Fowler, 2007 ), the change in symmetry may lead to block-

ing of mechanisms in one case but not the other. Examples

given later illustrate these possibilities. 

. A panel-hinge model for block-and-hole polyhedra 

Consider a 3D structure consisting of rigid bodies connected

n pairs by joints that allow various degrees of freedom. Such a

tructure with m mechanisms and s states of self-stress obeys the

ell-known Kutzbach–Grübler mobility criterion ( Grübler, 1917;

utzbach, 1929 ). This scalar counting equation can be extended to

 symmetry relation by using the concept of a contact polyhedron

 , in which bodies are associated with vertices and joints with

dges. The general approach is described elsewhere ( Guest and

owler, 2005 ). 

For the particular case of a body-hinge structure consisting of p

odies and h hinges, where each hinge allows only one relative de-

ree of freedom between the two bodies it connects, the standard

utzbach–Grübler counting relation is 

 − s = 6 p − 5 h − 6 (5)

nd the symmetry-extended form of this relation is 

(m ) − �(s ) = (�T + �R ) × [�(v , C) − �‖ (e, C)] − (�T + �R ) + �h . 

(6)

he representation �‖ ( e, C ) refers to vectors along edges of C , and

h refers to the freedoms associated with the hinges. Further de-

ails are available elsewhere ( Guest and Fowler, 2005; Fowler et al.,

016 ). 

Up to this point, we have been using a bar-joint framework

odel for block-and-hole structures which can be analysed using

he Maxwell Rule. There is a corresponding body-hinge framework,

hich can be formed from the bar-joint framework as follows: re-

lace each [ d ]-bipyramid by a d -sided ‘panel’ and each remaining

riangular face by a triangular panel; connect the panels together

y hinges that allow rotational motion about the line of the edge

f the underlying triangulation of the sphere. 

‘Panel’ here has the intuitive definition used in the engineer-

ng context: a rigid body with boundary defined by a cycle of
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BAR                     TRI                       CON

panel
hinge

bar
joint

cone double cone

face

P                                                       PH    

Fig. 2. A set of objects related to the polyhedron P: a panel-hinge model of P
(PH); a bar-joint model of the polyhedron (BAR); a fully triangulated bar-joint poly- 

hedron (TRI); a double-cone construction of a bar-joint model with blocks for all 

faces (CON). 
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inges and/or hole edges. In the mathematical literature it is usu-

lly considered that panels are planar, with coplanar hinge lines,

ut coplanarity is not assumed in the construction used in the

resent work. Instead, a panel in this paper only has the special

roperty that successive hinge edges on its boundary always lie on

ntersecting lines. The key non-generic feature implied by the use

f a spherical triangulation in our underlying construction is that

he hinge lines between panels around a vertex all pass through

hat vertex. A surprising consequence of this is discussed below. 

.1. The puzzle of additional states of self-stress in panel-hinge 

tructures 

As we are switching between different representations of

rameworks based on triangulations, it is useful to note a poten-

ially confusing distinction between a polyhedron constructed from

anels and hinges and the same polyhedron rendered as a bar-joint

ramework. This distinction extends to the corresponding physi-

al models of the derived block-and-hole polyhedra. In short, the

anel-hinge models have more states of self-stress. We show here

hat these can be characterised by number and symmetry, and we

rovide a mechanical explanation of their localised nature. 

.1.1. Scalar counting 

To discuss the differences between the panel-hinge and con-

tructed bar-joint models of a block-and-hole framework, it is use-

ul to define a set of objects related to a given ‘full’ polyhedron

one where all faces are blocks). Call this polyhedron P . It has f

aces, e edges and v vertices. 

The first object, PH, is the panel-hinge structure based on P,

ith rigid panels for faces of P, and hinges along edges of P . The

econd is BAR, a bar-joint framework with bars along edges of P
nd joints at vertices of P . The next two are derived from BAR:

hey are TRI, a bar-joint framework based on the triangulation de-

ived from P by coning every face of P of size greater than three,

nd CON, the bar-joint framework found by applying our construc-

ion to P to convert all faces of P to rigid blocks. CON is con-

tructed by adding another cone to every vertex of TRI that cor-

esponds to a face centre of P (or, equivalently, by double-coning

very non-triangular face of P). Schematically, for some face of P,

he objects in the sequence have local structure as shown in Fig. 2 .

e are interested in the difference in mobility count (m − s ) be-

ween PH and CON. The observation is that PH has extra states of

elf-stress compared to CON. We can calculate the differences, us-
ng TRI as a convenient intermediate, 

(m − s ) PH − (m − s ) CON = �, (7) 

(m − s ) CON − (m − s ) TRI = �1 , (8) 

(m − s ) TRI − (m − s ) BAR = �2 , (9) 

nd described in an ad hoc notation where (m − s ) OBJ refers to the

obility count of object OBJ. �, �1 and �2 are negative integers,

ecause coning introduces more states of self-stress than mecha-

isms. Noting that Maxwell’s rule gives 

1 = �2 = −
∑ 

r> 3 

(r − 3) f r , (10)

here f r is the number of faces of size r in polyhedron P, and the

obility (m − s ) TRI = 0 , since the TRI structure is a triangulation

f the sphere and hence generically isostatic, we have a relation

etween the mobilities of CON and BAR 

(m − s ) CON = −(m − s ) BAR = �1 = �2 , (11)

nd hence 

= (m − s ) PH − (m − s ) CON = (m − s ) PH + (m − s ) BAR . (12)

ombining the counting rules (1) and (5) , we find (since here p =
f, h = e ) 

= (6 f − 5 e − 6) + (3 v − e − 6) = −3 v . (13)

ence, the general counting result is that a panel-hinge polyhe-

ron where all faces are blocks has 3 v ‘extra’ states of self-stress

ompared to a corresponding bar-joint framework made by double

oning all the non-triangular faces of P to make a block-and-hole

olyhedron without holes. 

To see how this count of three states of self-stress per vertex

s modified in the non-trivial case where the block-and-hole poly-

edron has some blocks and some holes, take the simplest case,

here holes are based on independent (pairwise non-adjacent)

aces of P . Consider the constructions PH and CON as operating

ocally, face-by-face on some fixed subset of faces of the original

olyhedron P : P will then have block faces and hole faces . We will

se the notation PH 

′ , BAR 

′ and CON 

′ to indicate structures where

xed subsets of faces of P have been modified to give holes and

locks. 

The scalar counting argument is clear. Each independent single

ole of size r changes the mobility count of the panel-hinge struc-

ure by −6 + 5 r and the mobility count of the constructed frame-

ork by −6 + 2 r, and hence the introduction of each hole adds

 r to the (negative) quantity � (now defined as a difference be-

ween PH 

′ and BAR 

′ ), equivalent to removal from the vertex count

f the number of vertices of P in the hole boundary. The general

esult for block-and-hole polyhedra constructed with orbits of iso-

ated holes is that � is equal to −3 v b , where v b counts the vertices

f the panel-hinge structure that are not in any hole boundary: 

(m − s ) PH ′ − (m − s ) CON ′ = −3 v b . (14)

.1.2. Counting with symmetry 

The counting result (14) can be given a symmetry-extended

orm by combining previous expressions. In the case of a panel-

inge framework, the mobility criterion (6) can be modified to take

ccount of the known form of the contact polyhedron, C , and the

imple form of the freedoms of the hinges. The vertices of C are

he centres of panels, which are (all, or a subset of) faces of an

nderlying polyhedron P , and the edges of C run perpendicular to

hose of the polyhedron, so �(v , C) = �( f, P ) , �‖ (e, C) = �⊥ (e, P ) ,

nd �h = �(e, C) = �(e, P ) , where f and e may refer to appropriate

ubsets of faces and edges. Hence, for the panel-hinge framework
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PH modelling the block-and-hole polyhedron, the mobility repre-

sentation is 

[ �(m ) − �(s ) ] PH = (�T + �R ) × (�( f ) − �⊥ (e ) − �0 ) + �(e ) . 

(15)

The symmetry version of the scalar equation for � is naturally

defined as 

�(�) = [ �(m ) − �(s ) ] PH − [ �(m ) − �(s ) ] CON (16)

For the trivial case of the polyhedron with all faces rigid panels,

scalar equation (12) becomes an alternative definition of the rep-

resentation of the difference �, through 

�(�) = [ �(m ) − �(s ) ] PH + [ �(m ) − �(s ) ] BAR (17)

and hence 

�(�) = �T × (�( f ) − �⊥ (e ) + �(v )) 
− 2(�T + �R ) + �R × (�( f ) − �⊥ (e )) . (18)

The proof strategy in this section on counting with symmetry will

be to compare mobilities of PH and various bar-joint derivatives,

first in the absence of holes, and then with holes, to find the ef-

fects on the difference term �( �) of their introduction. We ex-

pect that the complicated expression (18) for �( �) will collapse

to something quite simple, given the scalar result (13) . 

The symmetry-extended Euler Theorem for polyhedra

( Ceulemans and Fowler, 1991 ) gives an expression for �⊥ ( e )

�⊥ (e ) = �( f ) + �(v ) × �ε − (�0 + �ε) , (19)

and hence all face and edge terms cancel from (18) to give 

�(�) = −�(v ) × �R . (20)

This matches the counting result that three local states of self-

stress are present for each vertex of the ‘full’ (hole-free) panel-

hinge structure, when compared to the mobility count for the con-

structed bar-joint framework. 

To track how �( �) changes on introduction of some specified

set of isolated holes (i.e., holes based on pairwise non-adjacent

faces of P), we check how the terms in (16) change when PH be-

comes PH 

′ and CON becomes CON 

′ . Removal of panels from PH

reduces both the set of contributing panel centres and the set of

panel perimeter edges. Hence, 

[ �(m ) − �(s ) ] PH ′ − [ �(m ) − �(s ) ] PH 

= (�T + �R ) ( �( f ) PH ′ − �( f ) PH − �⊥ (e ) PH ′ + �⊥ (e ) PH ) 

+ (�(e ) PH ′ − �(e ) PH ) . (21)

Likewise, conversion of blocks within CON to holes reduces the set

of contributing cone vertices, and the set of ‘spoke’ edges in the

cones, removing one double cone per hole. Hence, 

[ �(m ) − �(s ) ] CON ′ − [ �(m ) − �(s ) ] CON 

= (�T + �R ) 
(
�( f ) CON ′ − �( f ) CON − �⊥ (e ) CON ′ + �⊥ (e ) CON 

)

+ (�(e ) CON ′ − �(e ) CON ) . (22)

Notice that the faces of PH transform as single coning vertices of

CON, and that the changes in edges for a given hole involve re-

spectively one copy of the perimeter edges but two copies of the

spokes. Note also that since the holes are isolated in our construc-

tion, we need not distinguish between �( e ) and �⊥ ( e ) for edges on

hole perimeters as such edges have at best local C s symmetry. 

Collapsing terms, we obtain the representation �( ��) which

describes the change induced in �( �) by the holes, as 

�(��) = (�R − �T ) × �( f h ) − (�T + �R − �0 ) × �(e p , h ) + 2�(e s , h ) 

(23)
here f h is the set of faces of P replaced by holes, e p,h is the set

f perimeter edges bounding holes, e s,h is the set of spoke edges

n a triangulation of the holes, (and v h will be used for the set of

ertices in hole perimeters). Further simplification is not necessary

s we can show by evaluating characters that this expression is

onsistent with the intuition that �( �) will have the form 

(�) = −�R × �(v − v h ) (24)

here the only vertices to be counted in the permutation repre-

entation are those that are not on the perimeter of any hole. The

extra’ states of the panel-hinge model of a block-and-hole polyhe-

ron therefore span �( �). 

The proof of (24) is straightforward. The only symmetry ele-

ents on which hole centres, edges or vertices can lie are the

dentity, rotational axes (hole centres only) and mirror planes. Un-

er the identity, the trace of �( ��) is a contribution of 0 − 5 r +
 r = −3 r per hole of size r . Under a rotation C n , all perimeter and

poke edges shift, and the trace of �R − �T vanishes, so the total

race is zero. Under reflections, there are three subcases: a hole

hat is bisected by a mirror plane may be (i) of odd size, (ii) of

ven size with 2 perimeter edges cut by the plane, or (iii) of even

ize with 2 perimeter vertices in the plane. The trace of �( ��)

as a contribution of +1 in case (i), 0 in case (ii) and +2 in case

iii). Hence, the traces coincide with those of −�R × �(v h ) for all

perations, and (24) is proved. 

Fig. 3 illustrates the mechanical argument for the association of

he ‘extra’ states of self stress with local rotations. The key is that

ll the hinge lines associated with panels around a vertex meet at

 common point, the vertex itself. 

In principle, the subtractive nature of the mobility criteria, in

oth scalar and symmetry-extended forms, implies that we could

ave cancelling mechanisms and extra states of self-stress that do

ot show up in the count of −3 per vertex. However, the fact that

he symmetry result −�(v ) × �R is a combination of irreducible

epresentations with all negative coefficients implies that any such

hidden’ sets of mechanisms and states of self-stress would be

qui-symmetric as well as equal in size. 

. Examples 

In the examples that follow, we refer to isostatic block-and-hole

rameworks, meaning that the structure is isostatic considered as

 bar-joint framework; the panel-hinge analogue would have addi-

ional stresses of the type described in Section 3.1 . The illustrations

n this section often include Polydron (hence panel-hinge) models,

ecause they are easy to build and understand at a glance, even

hen the analysis is actually made in terms of a bar-joint model. 

.1. Symmetry-isostatic frameworks 

.1.1. Strongly counting-balanced examples 

It is straightforward to construct examples of strongly counting-

alanced block-and-hole frameworks that are symmetry-isostatic.

 belted [ k ]- bipyramid is a doubly coned [ k ]-prism (see Fig. 4 (a)

or a Schlegel diagram). When all square faces are capped, this

tructure becomes a triangulated sphere, the belted and braced [ k ]-

ipyramid ( Fig. 4 (b)). A block-and-hole bar-joint framework can be

ade by alternate deletion and duplication of the equatorial ver-

ices; the correponding panel-hinge structure ( Fig. 4 (c)) has alter-

ate central blocks and holes. 

Consider the D 3 h -symmetric structure in Fig. 4 (c). The three

oles span the O 3 h orbit of the group (a set of three objects that

re exchanged by the principal C 3 rotation and fixed by the hori-

ontal σ h mirror plane). The three blocks span a second copy of the

ame orbit. Hence, the framework is actually strongly symmetry-
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(a) (b)

(c) (d) (e)

(c′) (d′) (e′)

Fig. 3. A depiction of the extra local states of self-stress in a panel-hinge block-and-hole polyhedron. At a vertex, edges and panels come together so that a continuous ring 

of material is formed, although of infinitesimal extent. This ring is shown in isometric view in (a), and along a radius of the underlying object in (b): four potential ‘cut’ 

lines are shown. An independent set of three states of self-stress is here visualized by considering the shape the ring would take up if cut to relieve the internal stresses. In 

(c)–(e) the ring is cut in just one place, while in (c ′ )–(e ′ ) the ring is cut in four places; it is clear from this that (d ′ ) and (e ′ ) form a pair, with one state of self-stress just 

the rotated version of the other. These states of self-stress are intrinsic: they cannot be relieved by bending around the hinges intersecting at the vertex. 
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alanced, with 

(v h ) = �(v b ) = A 

′ 
1 + E ′ 

nd 

(e h ) = �(e b ) = A 

′ 
1 + A 

′ 
2 + 2 E ′ + A 

′′ 
1 + A 

′′ 
2 + 2 E ′′ , 

iving (�(m ) − �(s )) BH = 0 A similar result would be obtained for

he corresponding derivatives of any [4 p + 2] -bipyramidal struc-

ure where equatorial blocks and holes alternate. All are strongly

ymmetry-balanced in the point group D (2 p+1) h . 

However, it is easy to see that the [4 p ]-bipyramidal structures

ith the same block-hole alternation are finitely flexible, with a

echanism that destroys symmetry about the C 2 p rotational axis

nd the horizontal mirror plane of the D (2 p) h point group (see

ig. 4 (d), (e) for the case p = 2 ). 

Another easy way to achieve a strongly symmetry-balanced

ramework is to use only regular orbits ( Fowler and Quinn, 1986 )

f blocks and holes. A framework with point group G where ev-

ry block and hole has trivial site symmetry has all block and hole

rbits of size |G| , has representations �(v h ) = �(v b ) and �(e h ) =
(e b ) , and hence (�(m ) − �(s )) BH = 0 . 

.1.2. Counting-balanced examples 

There are also symmetry-isostatic block-and-hole frameworks

hich are counting-balanced, but not strongly counting-balanced.
ne example of this type is obtained by perturbing the block-and-

ole framework shown in Fig. 5 so that the mirror symmetry with

espect to the σ 2 plane (and hence the half-turn symmetry) is de-

troyed, and only the mirror symmetry in the σ 1 plane survives.

he perturbed framework is symmetry-balanced. 

Another example of this type is shown in Fig. 6 . This block-and-

ole framework has only reflection symmetry, and is counting-

alanced as a bar-joint framework. In this case, the framework is

ymmetry-isostatic, but not symmetry-balanced. 

.1.3. Counting-isostatic examples 

Finally, it is also easy to construct counting-isostatic bar-joint

lock-and-hole frameworks that are not counting-balanced, but

till symmetry-isostatic. Consider, for example, the C 3 -symmetric

ounting-isostatic framework shown in Fig. 7 . With three blocks

nd only one hole, it is not counting-balanced. However, explicit

alculations in the tabular form we have used before (see Fowler

nd Guest, 20 0 0; Guest and Fowler, 2005; Fowler et al., 2016 for

xample) show that it is symmetry-isostatic (see Table 1 ). 

.2. Counting-isostatic but not symmetry-isostatic frameworks 

We now consider examples of block-and-hole frameworks that

re counting-isostatic, but have symmetry-detectable mechanisms

nd states of self-stress. 
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(a)

(b) (c)

(d) (e)

Fig. 4. Structures derived from belted [ k ]-bipyramids. (a) Schlegel-like diagram of a typical member of the belted bipyramid family. Hollow triangular and square symbols 

indicate parts of a composite vertex. (b) The corresponding triangulated sphere, the belted and braced [ k ] bipyramid with k = 6 . (c) to (e) Polydron models of derived block- 

and-hole polyhedra: (c) An isostatic example with k = 6 and point group D 3 h ; (d) A finitely flexible example with k = 8 and point group D 4 h ; (e) A point on the path of the 

mechanism of structure (d). 

Table 1 

The mobility representation for the bar-joint block-and-hole example in Fig. 7 , 

which is shown by calculation to be equal to the zero representation. 

C 3 E C 3 C 2 3 

�( v b ) 3 0 0 

−�(v h ) −1 −1 −1 

2 −1 −1 

×�T 3 0 0 

6 0 0 

�( e h ) 6 0 0 

−�(e b ) −12 0 0 

�(m ) − �(s ) 0 0 0 
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4.2.1. Counting-isostatic examples 

We begin with an example that is counting-isostatic, but not

counting-balanced. The eponymous Sarrus linkage may be obtained

from the spherical triangulation depicted in Fig. 8 and is shown

in Fig. 9 (a). It consists of six panels connected by hinges, and the
nique mechanism maintains top and bottom platforms in paral-

el alignment. It serves as a means of converting a partial circular

otion into linear motion. Note that the Sarrus linkage relies on

riplets of mutually parallel hinges. 

We can analyse either the panel-hinge structure or its bar-joint

quivalent, and will arrive at the same result, as in this case all

ertices of the underlying triangulated sphere are incident with

 hole, and hence there are no ‘extra’ states of self-stress for the

anel-hinge version. We use the bar-joint version here. In full

 2 v symmetry, we have �(v h ) = 2 A 1 , �(v b ) = 2 A 1 + A 2 + 2 B 1 + B 2 ,

(e h ) = 4 A 1 + A 2 + 2 B 1 + 3 B 2 , �(e b ) = 4 A 1 + 4 A 2 + 4 B 1 + 4 B 2 , and

ence �(m ) − �(s ) = A 1 − B 1 . This analysis detects the fully sym-

etric mechanism that gives the linkage its defining property, and

he counterbalancing B 1 state of self-stress (with the symmetry

f a vector lying in the σ 1 plane). Hence, even in a geometry

hat is generic modulo the given C 2 v symmetry, the Sarrus link-

ge would still move, though not with the desirable retention of

arallel top and bottom panels. (Note that the structure shown
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Fig. 5. A counting-balanced , but not strongly counting-balanced , block-and-hole 

framework with two pentagonal blocks and two holes with perimeters 4 and 6, 

respectively. The Schlegel diagram for the panel-hinge version shows the maximum 

possible C 2 v symmetry, indicating the presence of a two-fold rotation and two per- 

pendicular mirror planes. 

Fig. 6. A Polydron model of a block-and-hole structure of C s (single reflection) sym- 

metry for which the bar-joint representation is counting-balanced and symmetry- 

isostatic. 
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Fig. 8. A Schlegel-like diagram of a triangulated spherical polyhedron which yields 

the Sarrus linkage in Fig. 9 (a) if the central vertex and the vertex ‘at infinity’ to- 

gether with their incident edges (shown in red) are removed, and each vertex to 

four green edges is duplicated and coned over the same neighbours. Both the un- 

derlying polyhedron and the Sarrus linkage have maximum symmetry C 2 v , as in- 

dicated. Note that swapping the roles of green and red edges yields the Stewart 

platform in Fig. 10 . (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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n Fig. 6 has lost one of the reflection planes and has become

sostatic.) 

In this case, swapping blocks and holes produces a phys-

cally different picture. The swapped structure is a variant of

he Stewart-platform ( Stewart, 1965; Dasgupta and Mruthyunjaya,

0 0 0 ) in a singular configuration (see Fig. 10 ). This swap does not

ead to a pure panel-hinge structure, as the hexagonal panel is

ow connected by hinges to the triangular panels, whereas the

quare panel is connected by pins and bars to the rest of the struc-

ure. However, the whole assembly can still be derived as a bar-

oint framework from a triangulation of the sphere by our dele-

ion/coning construction, with its mobility correctly accounted for,

s again all vertices derived from the triangulation are incident
(a)

ig. 7. A C 3 -symmetric isostatic block-and-hole framework which is not counting-balanc

ake the bar-joint counting-isostatic structure, each square panel would need to be bicap
ith holes. Symmetry counting in C 2 v using (4) detects a distortive

echanism that would reduce the symmetry to C s , and also de-

ects a totally symmetric state of self-stress. Hence the mechanism

f this platform cannot be guaranteed to be finite, and in fact it is

nly infinitesimal. 

.2.2. Counting-balanced examples 

Next we provide an example of a block-and-hole framework

hat is counting-balanced, but still has a symmetry detectable

echanism and state of self-stress (i.e., the framework is not

ymmetry-isostatic). Consider the C 2 v -symmetric block-and-hole

ramework shown as a Polydron model in Fig. 11 . (See also Fig. 5 .)

t is counting-balanced, but not strongly counting-balanced, as it

as two blocks (both 5-sided panels) and two holes (with perime-

ers of length 4 and 6, respectively). The calculation of charac-

ers in Table 2 shows that this framework has a totally symmetric

echanism and a corresponding state of self-stress of symmetry

 1 . 

.2.3. Strongly counting-balanced examples 

Finally, the most interesting situation arises when the frame-

ork is maximally balanced at the non-symmetric level, in the

ense that it is strongly counting-balanced, but nevertheless has a

ymmetry-detectable mechanism and state of self-stress. This sit-

ation can arise when the orbit partitions of blocks and holes are

ismatched, either in the distributions of orbit sizes, or of distin-
(b)

ed. (a) Polydron model and (b) Schlegel diagram of the panel-hinge structure. To 

ped, the hollow triangles already being rigid. 
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Fig. 9. A Polydron model of the Sarrus linkage (a) and a point on the path of its mechanism (b). 

Fig. 10. A Stewart platform obtained by swapping blocks and holes in the Sarrus 

linkage shown in Fig. 9 (a). Open circles indicate pin joints; there are two hinge 

joints connecting hexagonal and triangular panels. 

Table 2 

The mobility representation for the example in Fig. 11 is �(m ) − �(s ) = A 1 − B 1 . 

The A 1 mechanism is finite. A swap of blocks and holes yields a finitely flexible 

framework whose motion preserves only the σ 1 mirror symmetry. 

C 2 v E C 2 σ 1 σ 2 

�( v b ) 2 0 2 0 

−�(v h ) −2 −2 −2 −2 

0 −2 0 −2 

×�T 3 −1 1 1 

0 2 0 −2 

�( e h ) 10 0 2 4 

−�(e b ) −10 0 −2 0 

�(m ) − �(s ) 0 2 0 2 
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guishable orbits of the same size. Examples of both types are given

by the three ‘banana’ structures illustrated in Fig. 12 . 

In case (a), selection of pairs of squares as respectively holes

and blocks yields inequivalent orbits of the same size; in case (b)

holes are exchanged by reflection in the symmetry plane, whereas

the blocks are exchanged by the C 2 rotation. Again the orbits are of

the same size, but are inequivalent. In case (c) the blocks span two

orbits of size 1, whereas the holes are related by one of the sym-
Fig. 11. A Polydron model of a finitely flexible panel-hinge structure with
etry planes and hence span one orbit of size 2. The explicit cal-

ulations in Table 3 show the mobility representations in all three

ases. 

In case (a) the detected mechanism and state of self-stress each

ave the symmetry of a rotation about an axis orthogonal to the

rincipal axis. The blocks and holes span complementary halves of

 four-orbit of the parent D 4 h group. A swap of blocks and holes

eads to a change of setting of the D 2 h subgroup induced by the

hoice of half-orbits, but not to physically distinguishable mecha-

isms/states of self-stress. 

Case (a) extends to the already mentioned case of belted [4 k ]-

ipyramids, where blocks and holes belong to complementary

rbits lying on either σ v or σ d planes, giving one symmetry-

etectable mechanism and one state of self-stress for each k . 

In case (b), holes and blocks each span one orbit. The mecha-

ism is totally symmetric and the state of self-stress is symmetric

nder inversion only. A swap of blocks and holes gives a totally

ymmetric state of self-stress, implying the possibility of blocking

he mechanism (now of B g symmetry). In fact, the mechanism is

learly finite in the swapped framework. 

In case (c), holes span a single orbit of size 2, but blocks span

wo of size 1. The mechanism has the symmetry of a vector across

he C 2 axis, leading to C s symmetry in the distorted structure; the

tate of self-stress is anti-symmetric with respect to both reflec-

ions, and therefore anti-symmetric in the lower symmetry group,

ndicating that the mechanism is finite. A swap of blocks and holes

ow leads to a physically distinct situation, with a C 2 -preserving

echanism, also finite. 

.3. Some limitations of symmetry counting: block-and-hole towers. 

A well-studied class of block-and-hole structures are the tower

tructures , which contain a single block of size s and a single hole

f size t , where the block may be considered as the ‘ground’, and

he hole as the ‘open top’ of the tower ( Finbow-Singh et al., 2012;

hiteley, 2014 ). A tower structure is (strongly) counting-balanced
 point group C 2 v (a), and a point on the path of the mechanism (b). 
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Fig. 12. Polydron models of finitely flexible symmetric block-and-hole structures that are strongly counting-balanced. For the structures in (a), (b) and (c), figures (a ′ ), (b ′ ) 
and (c ′ ) show a point on the path of the corresponding mechanism. 

Table 3 

Calculations of mobility representations for the three structures shown as Polydron models in Fig. 12 (a)–(c). Case (a): The mobility 

representation is (�(m ) − �(s )) BH = B 3 g − B 2 g . A swap of blocks and holes yields the same representation with a different labelling. 

Case (b): Here (�(m ) − �(s )) BH = A g − B g . The totally symmetric A g mechanism is finite. A swap of blocks and holes yields a framework 

with a B g mechanism (preserving C i symmetry). This mechanism is not blocked by the A g state of self-stress associated with the caps. 

Case (c): Here (�(m ) − �(s )) BH = B 1 − A 2 . The finite B 1 mechanism reduces the symmetry of the structure from C 2 v to C s . A swap of 

blocks and holes leads to a finitely flexible framework whose motion preserves C 2 symmetry. 

Case (a) 

D 2 h E C 2 ( z ) C 2 ( y ) C 2 ( x ) i σ xy σ xz σ yz 

�( v b ) 2 0 2 0 0 2 0 2 

−�(v h ) −2 0 0 −2 0 −2 −2 0 

0 0 2 −2 0 0 −2 2 

×�T 3 −1 −1 −1 −3 1 1 1 

0 0 −2 2 0 0 −2 2 

�( e h ) 8 0 0 0 0 0 0 0 

−�(e b ) −8 0 0 0 0 0 0 0 

�(m ) − �(s ) 0 0 −2 2 0 0 −2 2 

Case (b) Case (c) 

C 2 h E C 2 i σ h C 2 v E C 2 σ 1 σ 2 

�( v b ) 2 0 0 2 �( v b ) 2 2 2 2 

−�(v h ) −2 −2 0 0 −�(v h ) −2 0 0 −2 

0 −2 0 2 0 2 2 0 

×�T 3 −1 −3 1 ×�T 3 −1 1 1 

0 2 0 2 0 −2 2 0 

�( e h ) 8 0 0 0 �( e h ) 8 0 0 0 

−�(e b ) −8 0 0 0 −�(e b ) −8 0 0 0 

�(m ) − �(s ) 0 2 0 2 �(m ) − �(s ) 0 −2 2 0 



50 S.D. Guest et al. / International Journal of Solids and Structures 150 (2018) 40–51 

Fig. 13. (a),(b) Polydron models of flexible tower structures with a hexagonal block and hole; (a ′ ), (b ′ ) points on the paths of the corresponding mechanisms. 
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a

iff the block and the hole are of the same size, say s = t = k . A

tower constructed from a k -gonal panel by adding l layers of tri-

angulated rings on top of it (as shown in Fig. 13 ) is called a [ k,

l ] -tower . We can analyse the rigidity of [ k, l ]-towers within their

largest possible symmetry group, C k v . 
Suppose first that k is even. If l is odd, we obtain (�(m ) −

�(s )) BH = B 2 − B 1 , and hence the structure has a symmetry-

detectable infinitesimal mechanism and state of self-stress. This B 2 
mechanism is in fact finite and deforms the triangular ring on the

very top of the tower, reducing the point group of the structure to

C (k/ 2) v . See Fig. 13 (a) and (a ′ ) for an illustration of the case k = 6

and l = 3 . Note that the structure actually has further infinitesimal

mechanisms, one for each of the layers 1 , . . . , l − 1 . However, for

each i = 1 , . . . , (l − 1) / 2 , the infinitesimal mechanism in the 2 i th

layer has an equi-symmetric state of self-stress in the (2 i − 1) th

layer below it and vice versa, and hence they all remain unde-

tected by our working equation. 

If both k and l are even, the [ k, l ]-tower is strongly symmetry-

balanced, and hence symmetry-isostatic. Nevertheless, the struc-

ture again has a finite mechanism deforming the triangular ring on

the very top of the tower. This is illustrated in Fig. 13 (a) and (a ′ )
for the case k = 6 and l = 2 . However, this mechanism is paired

with an equi-symmetric state of self-stress in the ring below it,

and is hence undetectable with our working equation. In fact, as

above, any [ k, l ]-tower, where k and l are even, actually has an

infinitesimal mechanism and a state of self-stress for each of its

layers. However, since l is even, none of these infinitesimal mech-

anisms or states of self-stress can be detected with our working

equation. 

Finally, it is easy to see that for all odd k , all [ k, l ]-towers with

C k v symmetry are strongly symmetry-balanced; in fact, these struc-

tures are isostatic. 

5. Conclusions 

The symmetry counting approach, together with a simple con-

struction as bar-joint frameworks based on modification of spheri-

cal triangulations, has been shown to extend the information avail-
ble from pure scalar counting for block-and-hole structures in

ypical cases. Symmetry also casts light on differences between

ar-joint and panel-hinge realisations of such structures. 

Various extensions beyond the simplest version of the construc-

ion as presented in Section 2 would be straightforwardly imple-

ented. For example, in the construction we focussed on the case

here no holes share a vertex of the original triangulation, but the

ymmetry mobility analysis also applies to at least the following

ore general structures. If two holes meet in just a single vertex

or in a finite set of vertices), we can augment the model by adding

in joints between the panels that meet at the vertices. If we al-

ow holes to share an edge, we can consider the edge to act as a

ar connecting the pin joints at the shared vertices. 

The differencing technique for assigning �(m ) − �(s ) is also ap-

licable to over-braced and under-braced structures. In particular,

e have used symmetry methods to analyse the structures that

ave been called ‘perforated polyhedra’ ( Fowler et al., 2016 ). Three

asic examples are obtained by the removal of six panels from

he equator of a small rhombicuboctahedron and choosing one of

hree mutual rotations of tropical and equatorial layers. Although

hese can be treated ( Fowler et al., 2016 ) using an explicit calcu-

ation of �(m ) − �(s ) for a body-hinge structure, it would be per-

ectly possible to apply a bar-joint rendering of each. The objects

re over-braced, with a count m − s = −6 , corresponding to seven

tates of self-stress and a unique distortive mechanism. The un-

erlying deltahedron in the present block-and-hole approach is of

ourse isostatic, and as there are six holes and twelve blocks (all

quare faces of the body-hinge structure) the excess of states of

elf-stress arises from the excess of blocks over holes, but symme-

ry is needed to see that this net excess of 6 arises from 7 states of

elf-stress and 1 mechanism. The mechanism emerges in these par-

icular examples as having the symmetry of the xyz spherical har-

onic. Arguably, the block-and-hole approach gives a more trans-

arent account of these intriguing structures. 

There are many more examples that are covered by the block-

nd-hole paradigm. 
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