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We examine the flexibility of periodic planar networks built from rigid corner-
connected equilateral triangles. Such systems are locally isostatic, since for each
triangle the total number of degrees of freedom equals the total number of con-
straints. These nets are 2D analogues of zeolite frameworks, which are periodic
assemblies of corner-sharing tetrahedra. If the corner connections are permitted
to rotate, as if pin-jointed, there is always at least one collapse mechanism in two
dimensions (and at least three mechanisms in three dimensions). We present a num-
ber of examples of such collapse modes for different topologies of triangular net.
We show that the number of collapse mechanisms grows with the size of unit cell.
The collapsible mechanisms that preserve higher symmetry of the network tend to
exhibit the widest range of densities without sterical overlap.
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1. Introduction

In this paper we examine locally isostatic periodic planar networks of corner-sharing
equilateral triangles. In these networks, each triangle is connected at the corners to
three neighbours, and each corner is shared between two triangles. The triangles
are rigid but can freely rotate in the plane, as if pin-jointed at their corners. The
networks, being periodic, are infinite in extent, but can be decomposed into finite
repeated units, analogous to unit cells in crystals. By locally isostatic, we mean
that for each rigid unit the number of degrees of freedom equals the number of
constraints. For our plane nets, each equilateral triangle has three degrees of freedom
(two translations and one rotation) and six constraints (x and y coordinates for
each corner). But each corner is shared between two triangles, so the number of
constraints per triangle is also three, rendering these nets locally isostatic.

The 3D analogue of these systems, networks of corner-sharing SiO4 tetrahedra,
provide a model of zeolites. These systems are also locally isostatic with six degrees
of freedom per tetrahedron and twelve shared constraints. This ‘rigid unit mode’
model has been intensively studied by M. Dove and co-workers (Hammonds et al.

1997, 1998) who applied it to diffusion and adsorption in zeolites facilitated by
flexibility. More recently, Sartbaeva et al. (2006) using geometric simulations have
shown that frameworks of real zeolites can be realized at some range of densities
called the ‘flexibility window’. They argue that the presence of the flexibility window
can be used as a criterion for the selection of potential synthetic targets among the
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millions of hypothetical zeolite frameworks (Treacy et al, 1997, 2004; Earl and
Deem, 2006).

Networks of corner-sharing triangles or tetrahedra have the same flexibility
properties as pin-jointed frames made of rigid bars placed at triangle edges and
connected by frictionless joints. These finite pin-jointed structures have been ex-
tensively studied. Maxwell(1864), introduced a simple rule: a system having j joints
and no kinematic constraints requires at least 3j − 6 (in 3D) or 2j − 3 (in 2D) bars
to be rigid. The Maxwell rule was generalized by Laman’s theorem (Laman 1970),
which solves the problem of generic rigidity in 2D (rigidity that depends only on the
topology of the system but does not depends on the specific edge lengths nor joint
coordinates). The Laman count has been implemented in the ‘pebble game’ by Ja-
cobs & Thorpe (1995, 1996). This numerical algorithm can determine the rigidity
of an arbitrary generic pin-jointed structure and enumerate its rigid and under-
constrained regions. Unfortunately, the pebble game cannot be applied to zeolite
frameworks nor to the 2D networks considered here. These systems are nongeneric
and exist in symmetrical realizations that can make some constraints redundant
and hence the system is not amenable to simple constraint counting.

To overcome these difficulties, one can use the linear algebra method described
by Pellegrino & Calladine (1986). This method calculates the rank of the ‘equilib-
rium’ or ‘rigidity’ matrix and identifies infinitesimal motions in the system. These
motions can be either finite (where the system can be continuously deformed with-
out deformations of its rigid units) or infinitesimal (where there is deformation of
second or higher order).

The flexibility of infinite repetitive structures is much less known. Guest &
Hutchinson (2003) generalized the Pellegrino and Calladine matrix method for in-
finite repetitive structure. They also proved, based on a linear algebra argument,
that locally isostatic infinite repetitive structures always have at least one (in 2D)
or three (in 3D) internal mechanisms. More recently, Hutchinson & Fleck (2006)
have classified periodic mechanisms and states of self-stress for the kagome lattice.

In this paper we extend these studies to a larger number of locally isostatic
networks. We show that all the networks studied have finite mechanisms that change
the volume of the unit cell.

2. Theoretical background

(a) Matrix analysis and kinetic determinacy of repetitive structures

Pellegrino & Calladine (1986) used linear algebra methods to analyze the flex-
ibility of pin-jointed structures. They described the equilibrium matrix, A, which
relates bar tensions, t, with external forces, f , acting on the joints

A · t = f . (2.1)

The transpose of the equilibrium matrix, the compatibility matrix, C connects the
joint displacements, d, with bar elongations, e:

C · d = e. (2.2)

The compatibility matrix is an n by 2j matrix, where n is the number of bars and j
is the number of joints. The number of mechanisms, or floppy modes, f , is related
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to the rank of the compatibility/equilibrium matrix r by

f = 2j − r. (2.3)

For the structures that we are considering there are, on average, just the right
number of constraints so that n = 2j, so that for local isostatic networks of the
kind we talk about in this paper, the equilibrium matrix A in (2.1) is square
and n by n. This implies that, if we consider a fixed unit cell, and write down a
compatibility matrix, the matrix will also be square and n by n. The unit cell is
the basic repetitive unit which contains a fixed number of nodes, edges etc and
which do not change during a deformation. Thus although the area of the cell does
changes, the contents do not. This repetitive unit may be just the original cell that
defines the undeformed lattice itself, or an integer number of such cells in each
of the two directions in the plane. However, if we now also allow the unit cell to
deform, in 2D we get another 3 deformation parameters (for instance two orthogonal
stretches and a shear), and the ‘augmented’ compatibility matrix will be n by n+3
(Guest & Hutchinson 2003). This matrix is guaranteed to have at least a three-
dimensional nullspace (joint movements/changes in shape of the unit cell that, to
first order, don’t cause extension of bars/deformation of triangles). This nullspace
must contain two rigid-body displacements; but this still leaves an orthogonal one-
dimensional space. This space cannot be a rigid-body rotation, as such a motion is
not allowed by the repetitive displacements demanded by the lattice; thus it must
be an ‘internal’ mechanism. This is a subtle argument that results in at least one
internal deformation for each repetitive cell. These are infinitesimal deformations,
but the argument can be repeated, as the structure is still repetitive after the
deformation is made, and hence leads to finite deformation(s) and pathways that
are discussed in section 3 (f). Because the network is repetitive, it is infinite in
extent and therefore no rotational motion is possible. This is because any such
rotation would not be consistent with the repetitive nature of the structure. There
are of course still the two macroscopic translational modes of deformation that can
be achieved at no cost in energy and so are zero frequency or floppy modes, albeit
of a trivial kind. Although the absence of rotations might seem trivial, it in fact
leads indirectly to observable consequences. What would have been a rotation mode
has been converted into an internal deformation, by the imposition of a repetitive
structure, and indeed this in some sense the case, but it is a mathematically rigorous
result, illustrated by the many examples in this paper.

There seems at first sight a contradiction here. On the one hand we are saying
that we have locally isostatic networks, which are therefore rigid, while on the
other hand, we are saying there is at least one internal deformation mode. The
difference is that having a repetitive structure makes the network atypical, thus
introducing additional floppy mode(s) or internal deformation(s). If the network was
truly generic, then it would have no repetitive unit from a geometrical standpoint,
and hence would indeed be rigid.

A similar argument applies in 3D, where allowing the unit cell to deform gives
six deformation parameters, the augmented compatibility matrix is n by n + 6, the
nullspace must be at least 6-dimensional, three of which are simple translational
degrees of freedom, which leaves at least three ‘internal’ mechanisms or floppy
modes. Thus locally isostatic networks, like zeolites, that are made up of corner-
sharing tetrahedra, have at least 3 internal deformation modes if they are repetitive,
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because such networks are atypical. This leads to a rich behavior in a wide variety
of silica networks (Hammonds et al. 1997, 1998) and in zeolites (Sartbaeva et al.

2006). Pathways in these networks are also finite, as infinitesimal deformations
can be strung together (as in 2D), but have much more complexity, which is one
motivation for this paper. Studying pathways in 2D is so much more tractable, as
well as easy to visualize, as compared to 3D.

(b) Ring count

Next we rederive the simple relation between fractions of rings of different sizes.
If we replace each triangle with a vertex, and consider each link between triangles as
an edge, any network of corner-sharing triangles can be turned into a 3-connected
net. In this paper we use the terms net and network interchangeably to describe an
infinite set of vertices connected by edges. Thus 3-connected nets (or networks) are
when every vertex is joined to exactly 3 other vertices by edges. For any infinite
2D-net, according to the Euler equation (Coxeter 1961), the sum of the number of
vertices V and polygons (rings) P per unit cell is equal to the number of edges,
V + P = E. If we define there to be Nn polygons with n vertices in each unit
cell, then P =

∑

n

Nn. Further, counting the vertices for every polygon,
∑

n

nNn, will

count each vertex three times; similarly, counting the vertices for every edge, 2E,
will count each vertex three times, so that

3V = 2E =
∑

n

nNn. (2.4)

Thus, substituting into the Euler equation,

6P = 6E − 6V (2.5)

6
∑

n

Nn =
∑

n

nNn (2.6)

which means that the average ring size is six for any plane net. Thus, it is impossible
to build a network that comprises only small rings (smaller than six) or only large
rings. The presence of large rings in network has to be compensated by small rings.

3. Examples

(a) Kagome lattice

The simplest network of triangles, the kagome lattice (fig. 1) comprises only
one type of ring, which according to (2.6) must be hexagonal (the corresponding
3-connected net is known as the ‘honeycomb’ net). The infinitesimal collapse mech-
anisms of the kagome lattice have been studied in detail by Hutchinson & Fleck
(2006). With the smallest unit cell, which has the form of a rhombus with angle
π/3, and consists of only two triangles, the network has only one collapse mecha-
nism, as shown in fig. 1b. This mechanism reduces the p6mm plane symmetry to
p31m. For definitions of plane symmetry groups see (Hahn 1995). The area of the
unit cell is

S = a2 sin π/3 =
√

3 l2(1 − cos θ), (3.1)

Article submitted to Royal Society



On the Collapse of Locally Isostatic Networks 5

Figure 1. Four different configurations of the kagome topology. a) Minimum density state,
with p6mm plane group symmetry. b) Snapshot of the collapse mode available when there
is one hexagon per hexagonal unit cell (p31m plane group symmetry). c) Snapshot of an
alternative collapse mode when there are two hexagons per rectangular unit cell (p2gg

plane group symmetry). d) Snapshot of an additional collapse mode when there are four
topologically distinct hexagons per oblique unit cell (p2 plane group symmetry).

where a and l are, respectively, the length of the unit cell and the side of triangle,
and θ is an angle between two lines connecting two centers of adjacent triangles.
The maximal area, Smax, occurs at θ = π, and the value of the minimal area, Smin,
depends on whether triangles are allowed to overlap. If triangles are allowed to
overlap (θ < π/3), then the unit area vanishes at θ = 0, which means that any
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Figure 2. One collapse mechanism of the kagome net with a 5 × 5 unit cell (p3 plane
group symmetry).

finite piece of a kagome lattice collapses into a single triangle, but with a unit cell
of zero edge length.

The number of internal mechanisms grows as the relative size of the unit cell in-
creases. Thus, fig. 1c shows a new mechanism (in addition to the mechanism shown
in fig. 1b) that appears when the unit cell contains two rings. This mechanism
adopts plane group symmetry p2gg, and can be transformed into the higher sym-
metry, and vice versa, through the configuration of maximal area (fig. 1a). The two
rings are related by a glide symmetry operation and therefore have equal area, and
the new mechanism does not affect the density calculation for the kagome lattice.

A further collapse mode that appears for the 2 × 2 unit cell is shown in fig
1d. Its unit cell has plane group symmetry p2, and contains four distinct hexagon
configurations. The network maintains a 2-fold symmetry axis at the middle of each
ring. Finally, fig. 2 shows one of the collapsing mechanisms in the kagome net with
a unit cell that is a 5×5 repeat of the basic kagome cell. The plane group symmetry
is p3, with nine topologically distinct hexagon configurations.

(b) ‘Roman mosaic’ lattice

For the next example, we consider the net shown in fig. 3, which is made of equal
numbers of rhombi and octagons (we will refer to the corresponding 3-connected
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Figure 3. Roman mosaic net. a) Minimum density configuration, p4mm. b) Snapshot of
the shear collapse mode that occurs when there is one octagon and one rhombus per
primitive unit cell, c2mm. c) Snapshot of the high symmetry collapse mode when there
are two octagons and two rhombi per square unit cell, p4mm. d) Snapshot of the low
symmetry collapse mode when there four octagons and four rhombi per square unit cell,
p2mg.

net as the roman mosaic lattice, as it is a tiling pattern found on Roman floors).
Some of the collapse mechanisms are shown in fig. 3. Since a rhombus has only
one internal degree of freedom, defined by the angle θ shown in fig. 4, we consider
the ‘roman mosaic’ lattice as tessellations of rhombi. Within the primitive unit
cell (four equilateral triangles, delineated by the solid lines) the network has only
one mechanism (sheared collapse), shown in fig. 3b. There is a higher symmetry,
face-centered setting c2mm delineated by the dotted cell in fig. 3b. The area of the
oblique primitive cell (shown by the solid lines) is equal to twice the area of the
rectangle shown in fig. 4. From fig. 4, |AB| = 2l sin[θ/2] and |BC| = 2l sin[θ/2 +
π/6], thus the area of unit cell, S is given by

S = 2|AB| · |BC| = 4 l2
[√

3/2 − cos(θ + π/6)
]

(3.2)
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Figure 4. Rhombus area used to calculate the area of the roman mosaic lattice.
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Figure 5. Normalized areas of the Roman mosaic network as a function of the inter-triangle
angle in the rhombus. There is a distinct equation of state for each collapse mode. Vertical
lines marked 60◦ and 120◦ indicate the angles where triangles and oxygens touch (see
subsection Flexibility index for details).

The area has maximum at θ = 5π/6 which equals to Smax = 2 l2 (2 +
√

3) and
minimum at θ = π/3 with Smin = 2

√
3 l2.

Two other collapse mechanisms can be found when the unit cell remains square,
but now contains eight triangles. The mechanism shown in fig. 3c (symmetric col-
lapse) can be presented as columns (or rows) of rhombi connected through mirror
lines. The unit cell splits into two rectangles with sides equals to |AB| and |BC|
and two squares, one with side |AB| and the other with side |BC|. Then the unit
cell area is

S = 2 |AB| · |BC| + |AB|2 + |BC|2 = 2 l2 (2 +
√

3) (1 − cos[θ + π/6]). (3.3)

The maximal area is Smax = 4 l2(2 +
√

3) and the minimum area is exactly half
this, Smin = 2 l2(2 +

√
3)

The last mechanism considered here (asymmetric collapse, fig. 3d) can be viewed
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Figure 6. A network with only odd rings, 5-rings and 7-rings in equal numbers. a) Minimum
density state (maximum area), and b) an intermediate density state. This net maintains
pg plane group symmetry during deformation.

as rows of rhombi with two different, alternating, sizes. The unit cell area for this
case has been solved numerically.

Figure 5 shows the dependency of the area of one unit cell of the Roman mosaic
on the angle θ for different collapsing mechanisms. The solid lines correspond to
the region where triangles do not overlap (θ > π/3). The shear mechanism shows
larger changes in unit cell area than the others. Once overlap between triangles is
allowed the structures continue to shrink until the entire infinite net collapses at
θ = 0 into a finite structure of a few triangles (similar to the collapse of the kagome
lattice). The angle θ is zero when adjoining equilateral triangles lie exactly on top
of each other. The dashed line corresponding to the sheared mode stops at θ = 34◦.
At this point the system flips to the other configuration as it is shown at fig. 9 and
continues to collapse to zero area configuration with angle θ fixed at π/3.

(c) Network with odd rings

Both the kagome and Roman mosaic networks have even numbers of triangles
in each ring, and also have high symmetry, which may increase the number of in-
finitesimal mechanisms (Guest, 2000) by making constraints redundant. Flexibility
is not restricted to structures with even rings. The network shown in fig. 6 com-
prises only odd rings (sizes 5 and 7), with a rectangular unit cell of plane group
symmetry pg, and containing 16 equilateral triangles. Figure 6a presents the maxi-
mal area configuration, and fig. 6b demonstrates a collapse mechanism that retains
the rectangular symmetry of the unit cell, but alters its aspect ratio.
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Figure 7. A large random network. Two states are superimposed; the unit cell of the
state shown in grey has an area just over 2% smaller than the state shown in black.

(d) Large random network

Our last example, a large random network shown in fig. 7, is taken from com-
puter modeling of vitreous silica (He, 1985). This periodic structure was generated
by successively introducing 250 defects into an 800-site honeycomb lattice, while
maintaining full corner connectivity. The network contains 33.5% pentagons, 24%
heptagons and 4.5% octagons and appears disordered. A first order calculation
shows that this network has one infinitesimal collapse mode, and following this
path gives an alternative finitely deformed configuration, which is also shown su-
perimposed in the figure.

(e) Flexibility index

As a way to measure network flexibility we introduce a flexibility index

F = Smax/Smin. (3.4)
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Lattice Mechanism F∆ FO

kagome 1 × 1 (fig. 1b) 4 1.333

2 × 1 (fig. 1c) 4 1.333

2 × 2 (fig. 1d) 2 1.180

5 × 5 (fig. 2) 2.187 1.135

Roman mosaic sheared (fig. 3b) 2.155 1.077

symmetric collapse (fig. 3c) 2 1.072

asymmetric collapse (fig. 3d) 1.862 1.066

5 × 7 net fig. 6b 1.553 1.090

Table 1. Flexibility indices for different collapse mechanisms of various lattices.

The maximum area, Smax, is defined as the area where triangles are under tension
and would start stretching if the area were increased further. We use two different
definitions for the the minimum area, Smin. In one definition the minimum area oc-
curs when triangles first touch, which corresponds to the density where the smallest
angle θmin equals π/3. The other option for the minimum area is related to the
definition of the flexibility window in 3D zeolite frameworks (Sartbaeva et al. 2006).
According to this, each vertex is occupied by an oxygen atom with radius equal to
half of the triangle side. Then the minimum area, defined by the touching of oxygen
atoms, occurs when the smallest angle equals θmin = 2π/3. Both definitions give
rise to flexibility indexes, the former F∆ and the latter FO, and these are presented
in table 1 for different frameworks and their collapse mechanisms. From the defini-
tion of the flexibility indices, it is clear that the larger they are, the more flexible
is the framework. For rigid structures the flexibility indices equal unity.

(f ) Collapse of networks without repulsion

In this section we take one further step in our modeling these 2D isostatic net-
works and assume that there is no repulsion between triangles or between vertices.
In this purely theoretical situation, compression of the network will continue until
the unit cell area becomes zero. In that case all triangles are laying on the top of
each other and the entire infinite network becomes a very small system of few (in
some cases just one) triangle(s). In the simplest case, the basic collapse mechanism
of kagome lattice shown on fig. 1 b), the network can be continuously folded from
the point of maximum area (fig. 1 a) to the point of zero area by changing the angle
θ from π to 0. At the θ = 0 point all periodic images of vertices coincide with each
other and whole system is reduced to a single triangle. However, there is a second
way to collapse the system. It also starts from the maximum area configuration
and proceeds by increasing θ from π to 2π. It is easy to see that the final configu-
ration is again just a single triangle but each intermediate point is the same as in
the previous pathway, but related by a symmetry operation. Since the two paths
intersect with each other only at two points – maximum and zero areas – they can
be combined into one continuous closed pathway, as shown in fig. 8a. The pathways
shown in fig 8a use the area S as the radius in polar coordinates, and uses θ as the
usual angle in polar coordinates. For the kagome lattice, the basic collapse pathway
has the form of a cardioid given by (3.1).

As was mentioned before, the 1×1 kagome lattice has only one folding-unfolding
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Figure 8. The ’pathway’ plot of unit cell area S shown as the length of the radius vs
inter-triangle angle θ in polar coordinates. a) 1 × 1 kagome net, b) 2 × 2 kagome net, c)
shear collapse mode of Roman mosaic net. The solid blue rectangle and the solid red circle
represent the maximum and zero areas.

path. With increasing size of the unit cell, new collapse modes appear. Fig 8b
represents one of such modes in the 2 × 2 kagome lattice. This pathway has the
shape of a highly deformed cardioid. In both cases above, the fundamental unit
cells keep their shape (a = b, γ = π/3) during compression and at the zero area
a = b = 0.

It turns out that the collapse pathways of two other systems, the 2× 1 kagome
(fig. 1c) and the Roman mosaic net high symmetry collapse, also have form of a
cardioid. For the Roman mosaic low-symmetry collapse it is a deformed cardioid.
However, this is not the case for all networks. An interesting example is the shear
mode of the Roman mosaic (fig. 3b). Again, we consider the pathway of the unit
cell area S as a function of an intertriangle angle θ. At the maximum area angle θ =
5π/6. Similar to previous cases, there are two collapse paths related to decreasing
or increasing of θ. At some density, both paths have a discontinuity, shown with
dashed lines on fig. 8c. At that density the system cannot continue to follow the
folding path without violation of geometric constraints, so instead the system flips
to another configuration that has the same density. Both configurations, before and
after the flip, are shown on fig 9b and 9c. After the flip the system collapses to zero
area, which has a shape of two adjusted triangles (fig. 9d). During the compression
a = b and these go to zero as the area goes to zero. The angle γ decreases from π/2
to about 2π/9 before the flip and remains fixed at π/3 after it.

We note that results in this section are often different if a different angle is chosen
to display the pathway, and we have found no objective way of selecting which angle
to display. The ones shown here give particularly ’simple’ closed pathways as shown
in the three panels of fig 8.

4. Conclusions

We have tested the argument contained in Guest & Hutchinson (2003) about col-
lapsible mechanisms in repetitive, locally isostatic, structures. According to this
argument, such structures are collapsible with, at least, one mechanism for plane
nets and at least three mechanisms for 3D nets. Our examples are 2D networks
of corner-sharing triangles ranging from the kagome lattice, which is the simplest
network containing rings of only one size, up to the large random network with
800 triangles. We show that all these structures are flexible. The number of col-
lapse mechanisms grows with the size of the unit cell. But this is still the subject
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Figure 9. Illustration of the flip associated with the shear mode of Roman mosaic. a) some
large area configuration, b) before flip, c) after flip, d) zero area. Each vertex is labeled
with an integer number. Vertices 1’ and 2’ are periodic images of vertices 1 and 2.

of ongoing work. Results do appear for the number of infinitesimal modes for par-
ticular systems, in e.g. Hutchinson & Fleck (2006), and Hammonds et al. (1998),
but no general rule has been found, nor is there any understanding of how these
infinitesimal modes might extend to finite deformations. We have also found that
the collapsible mechanisms that preserve the higher symmetry of the network tend
to exhibit the widest range of densities without sterical overlap.

This paper was initially developed at the workshop ‘Geometric constraints with applica-
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