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A symmetry-extended mobility criterion that incorporates Danzer’s concept of bar-and-
joint assemblies is derived and applied to the spherical circle-packing problem. The
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packing are consequences of the co-kernel structure of the representation spanned by
Danzerian mechanisms, and in several cases lead to new local optima.
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1. Introduction

Variants of the packing problem appear in many situations in the natural
sciences (e.g. the books by Sadoc & Mosseri (1997), Conway & Sloane (1999),
Aste & Weaire (2000) and Lord et al. (2006)). In the best-known version, the
problem is to arrange n equal circles (spherical caps), without overlap, on a
sphere, so that their angular radius, r, is a maximum (Tammes 1930). Exact
solutions have been published for nZ1–12 (Fejes Tóth 1943; Schütte & van der
Waerden 1951; Danzer 1963) and nZ24 (Robinson 1961). Computer-generated
putative solutions for many values of n%90 are given by Kottwitz (1991) and a
list of best solutions for n%130 is maintained by Sloane et al. (2000).

Ideas drawn from engineering have proved useful in improving candidate
solutions (Danzer 1963; Tarnai & Gáspár 1983a). Danzer (1963) defined a
concept of rigidity which is applicable to the circle-packing problem. In general,
a packing (optimal or not) defines a graph, the so-called packing graph, with
vertices representing the centre of each spherical cap and edges representing
the pairs of circles in contact. In Danzer (1963), the graph is considered as a
pin-jointed framework, or truss, with joints (vertices) and bars (edges) embedded
in the unit sphere. As in a conventional truss, the bars provide constraints;
however, the special feature here is that uniform expansion of all bars simply
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corresponds to an increase in the radius of the spherical caps that are to be
packed, and hence is an allowed degree of freedom. Tarnai & Gáspár (1983a)
recognized this feature by adopting a simple Maxwellian counting rule where the
number of constraints is reduced by one with respect to a conventional count.
Danzer (1963) found that, in many cases, the assignment of a candidate packing
as non-rigid on this specialized criterion implied the existence of a pathway to
an improved solution. He was able to find improvements to the then best
available solutions for nZ17, 32. Tarnai & Gáspár (1983a) also exploited this
strategy to find improved solutions for nZ18, 27. The concept of rigidity defined
by Danzer has also been used implicitly by van der Waerden (1952) for nZ20, by
Leech (1957) for nZ32, by Goldberg (1967a) for nZ30, 32 and by Goldberg
(1967b) for nZ33.

Use of Danzer’s ideas by groups with an engineering background (Tarnai &
Gáspár 1983a) was catalysed by a mention in a classic text by Fejes Tóth (1964).
On p. 236 of his book on Regular figures, he states ‘Danzer pointed out that the
edge-system of an extremal graph, considered as a joint mechanism, cannot
admit motions other than isometries’. This statement makes it clear that packing
problems and the theory of bar-and-joint assemblies can be connected, and
points the way to the analysis of packing problems with engineering tools.
Danzer’s rigidity principle was also applied to the packing of 19 circles in a
square by Tarnai & Gáspár (1995–1996).

Connelly (1984, 1988, in press) has also used Danzer’s rigidity principle and
embedded it in his general theory of rigidity of tensegrity frameworks. Such a
framework is built up from three types of members: ‘struts’ that are not allowed
to shorten; ‘rods’ that have fixed length; and ‘cables’ that are not allowed to
lengthen. The packing graph is considered as a tensegrity framework, all of whose
members are struts. For a packing of circles in a concave container in a space of
constant non-positive curvature, Connelly proves that infinitesimal rigidity of
the packing graph must occur for a locally maximal dense packing.
Unfortunately, this result does not extend to packing in a space of constant
positive curvature, as exemplified by circle packings on a sphere.

Danzer’s ideas have thus already proved to be fruitful in this area, but work
with similar counting rules such as the Euler formula (Ceulemans & Fowler
1991), Maxwell’s rule for the rigidity of frameworks (Fowler & Guest 2000) and
the mechanism mobility criterion (Guest & Fowler 2006) has shown that it is
often profitable to recast scalar counting rules in the language of point-group
symmetry. The present paper applies analogous reasoning to Danzerian rigidity
and gives a symmetry extension of Tarnai & Gáspár’s treatment. Although, in
the cases discussed, the symmetry treatment does not produce improvements
in the known largest packing radii, it provides additional insight, typically
by revealing the symmetry of the distortion of a candidate structure necessary
to achieve improvement, and even, in some cases, showing the existence of
improvability not apparent from the scalar count.

The structure of the paper is as follows. We describe the Danzerian counting
rule and derive its symmetry counterpart in §2, and then in §3 apply it to the
circle-packing problem for certain values of n, in order to describe connections
between known candidate solutions, explore neglected regions of the solution
space and illustrate the heuristic usefulness of Danzer’s approach to rigidity
and packing.
Proc. R. Soc. A (2008)
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2. The Danzerian counting rule

The net freedoms available to a packing under the Danzerian definition of
rigidity can be counted as follows. The 2jK3 degrees of freedom of the truss
(graph embedded in the sphere) are those of the two-dimensional motion of the j
joints (vertices) on the sphere, excluding the three rigid-body rotations. The bK1
constraints are provided by the b bars (edges), with the proviso that uniform
expansion of all bars is allowed. Tarnai & Gáspár (1983a) express this net
freedom of the truss as

fD Z 2jKbK2: ð2:1Þ
An equivalent counting formula is used by Connelly (in press) for a rigid

packing in a finite container. In our notation, his condition for rigidity is bR2jC1,
neglecting ‘rigid congruences of the whole space’, and if the packing is on the
sphere, inclusion of these congruences, i.e. the three degrees of freedom for the rigid
rotation of the sphere, leads to bR2jK2. This is compatible with (2.1): if the
packing is rigid then the Danzerian degree of freedom is not positive, fD%0, and
substitution in (2.1) gives bR2jK2.

Danzerian freedoms give the basis for a heuristic for seeking improvements on
packing arrangements, which has been used by Danzer (1963) himself and others
(e.g. Tarnai & Gáspár 1983a,b; Tarnai et al. 2003). Danzer wrote (as translated
by Dreyer; Danzer 1986) ‘I have not succeeded in producing a general proof that
every degree of freedom can be used to enlarge the edge-length, and I do not even
wish to conjecture the generality of this statement’. In fact, with the exclusion of
the pathological five-circle packing (Tarnai & Gáspár 1983a), we do not know of
any case where the existence of a Danzerian freedom does not provide a path to
an improved solution. We take a positive value of fD as a strong indication that it
is worth attempting to find improvements.

Taking into account of the symmetry of the configuration, we can refine the
information from the counting argument (2.1). The symmetry extension of the scalar
counting rule for Danzerian rigidity can be readily deduced using elementary point-
group theory (e.g. Bishop 1973). We have to connect simply the reducible
representations with the freedoms and constraints considered in the scalar case.

The representation spanned by the 2jK3 net freedoms of the joints is

Gfree ZGðj Þ!fGTKG0gKGR; ð2:2Þ

where G( j ) is the permutation representation of the set of vertices; GT is
the representation of translations along the three Cartesian directions; GR is the
representation of rotations about the three Cartesian directions; and G0 is the
totally symmetric representation, all in the point group G of the packing.
The form of Gfree expresses the facts that each vertex is in principle free to move
in two independent directions on the sphere, but is forbidden to move in the third
(radial) direction, off the spherical surface, and that rigid rotations of the set of
vertices as a whole do not change the packing. Equation (2.2) can thus be
constructed by initially considering the representation of the j vertices free to
move in three dimensions (G( j )!GT), removing the representation of the j
vertices forced to move in a radial direction ðGðjÞhGðjÞ!G0Þ and further
removing the representation of all vertices moving in a concerted rigid-body
rotation (GR).
Proc. R. Soc. A (2008)
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The representation spanned by the bK1 constraints imposed by the bars is

Gconstraint ZGðbÞKG0; ð2:3Þ
where G(b) is the permutation representation of the set of edges. The form of
Gcontraint expresses the fact that every edge is of the same length (twice the radius
of the contacting spherical caps), and hence would impose an independent
constraint, except that, by Danzer’s reasoning, a uniform (and hence totally
symmetric) expansion of all edges does not constitute a constraint and hence the
total number of edge-related constraints is only bK1. Note that total symmetry
implies an expansion described by a single value for each orbit of symmetry-
equivalent edges in the structure. In fact, here these values are equal for all orbits
of edges.

Thus the symmetry equivalent of (2.1) gives G(fD), the representation of the
Danzerian freedoms,

GðfDÞZGðjÞ!fGTKG0gKGRKGðbÞCG0: ð2:4Þ
More details on the group-theoretical background are given in Fowler & Guest
(2000) and references therein. Here we simply note that all the intermediate
quantities required to construct G(fD) are easily accessible once the point-group
symmetry of the packing is given. The permutation representation of a set of
structural components has character c(R) under symmetry operation R that is
equal to the number of components unshifted by that operation, G0 has c(R)Z1
for all R and both GT and GR can be read off from standard character tables (e.g.
Atkins et al. 1970; Altmann & Herzig 1994).

The discussion of Danzerian rigidity has so far been cast in terms of
kinematics. However, in the spirit of Calladine’s (1978) extension of Maxwell’s
Rule, it is also helpful to consider the statics perspective. In general,
corresponding to each kinematic constraint is an internal force (Pellegrino &
Calladine 1986; Tarnai & Szabó 2002). However, as in the Danzer formulation we
exclude the uniform expansion of all bars from the set of kinematic constraints.
In the statics treatment, we require that any allowed vector of internal forces is
orthogonal to the main, or ‘all-ones’ vector, i.e. the vector of uniform forces in all
bars. Considering only counting, we express the net freedom fD as a difference
between the number of infinitesimal mechanisms m (uniform expansion of all
bars being in principle allowed) and the number of possible states of self-stress,
s (all orthogonal to the main vector),

fD ZmKsZ 2jKbK2: ð2:5Þ
Evaluation of m and s as separate quantities requires, in general, full knowledge
of the current geometric configuration and the calculation of the rank of a
constraint matrix, whereas the difference mKs is accessible by pure counting.
The symmetry equivalent of (2.5) is

GðfDÞZGðmÞKGðsÞZGðjÞ!fGTKG0gKGRKGðbÞCG0; ð2:6Þ
where G(m) and G(s) are, respectively, the representation spanned by the
infinitesimal mechanisms, and that by the states of self-stress, of the truss that
models the packing. Equation (2.6) is the full, symmetry-adapted, version of
the Danzer rigidity criterion and will be the main equation that we will use in
this paper.
Proc. R. Soc. A (2008)
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A simple consequence of the statics-based restriction is that every allowed set
of forces, and hence every allowed state of self-stress, must include both tension
and compression, since the sum of forces taken over all bars must be zero. The
dual, kinematic statement is that the only unconstrained expansion can be the
one that is equal in all bars.

Given a method of calculating G(fD), there is an obvious extension of the
heuristic reasoning that has been used for fD. If any irreducible representation
appears with positive weight in G(fD), it can be taken as an indication of
the symmetry of a (distortive) mode that will lead to the improvement of the
packing. The same caveats apply: there is no formal proof that positive fD, or
positive contributions to G(fD), implies improvability, and there can be none in
its strongest form, given the exceptional case of the five-circle packing (Tarnai &
Gáspár 1983a).

The scalar rule (2.5) gives information about the difference between the global
counts m and s; (2.6) gives more detailed information on the match between m
and s, irreducible representation by irreducible representation or, equivalently,
class of symmetry operations by class of symmetry operations. The scalar
counting rule is simply the projection of (2.6) under the identity operation. In
many cases, the more detailed breakdown of net freedoms given by (2.6) can
yield useful information on strategies for improving a given packing. In the
remainder of the paper, we consider examples taken from the history of attempts
to find optimum packings, chosen to illustrate various advantages of the
symmetry treatment.
3. Applications

Examples of circle packings are now discussed, in an order that reflects increasing
complexity of the symmetry treatment. In each case listed, the symmetry
treatment gives a unifying perspective on the history and a practical strategy for
the improvement of larger examples of the same type.

(a ) Packing of 17 circles

Our first example is the packing of 17 circles, which we choose as a good
illustration of the usefulness of Danzer’s approach to rigidity: it shows the
association between the improvement of the packing and the breaking of an
assumed symmetry.

Jucovič (1959) proposed a solution with D5h symmetry, illustrated in figure 1a.
The packing graphs have bZ30 edges and all faces are (spherical) rhombi. The
jZ17 vertices are arranged in three orbits: an antipodal pair on the fivefold axis;
a set of 5 on the equator; and a set of 10 on the vertices of a pentagonal prism.
The edge length in the graph (the angular diameter of the circles) is 51820.

Application of the scalar Danzer rigidity criterion (2.5), fDZmKs Z34K30
K2Z2, implies that this graph is not rigid, and suggests that there may
be improved solutions in which additional circles come into contact and
hence additional edges are added to the packing graph. Danzer (1963) found
such a solution (figure 1b) that has C2v symmetry and corresponds to the
addition of four edges (shown as dotted lines in figure 1a) to Jucovič’s
arrangement; the graph is now Danzerian rigid, with fDZK2. The edge length
Proc. R. Soc. A (2008)
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(b)

Figure 1. Packing graphs for 17 circles. (a) The suboptimal D5h arrangement found by Jucovič
(1959) and (b) the improved C2v found by Danzer (1963). The dashed lines in (a) represent the
edges that form as the arrangement is deformed to that of (b). For depictions of the spherical
graphs on a plane surface, stereographic projections are used, and the centre of the projection lies
on the principal axis of the symmetry of the graph. For the sake of simplicity, the edges of the
graph are replaced by straight line segments.

P. W. Fowler et al.3242
(Tarnai & Gáspár 1983a) is 5185 025.2 00. This is probably the same solution
reported by Karabinta (1973) and remains the best-known solution (Kottwitz
1991; Sloane et al. 2000).

The application of the full symmetry-adapted Danzer rigidity criterion (2.6) to
the Jucovič parrangement is set out in tabular form below, which follows the
format used in Fowler & Guest (2000; cZcos 728, c0Zcos 1448).
Proc. R. Soc. A (2008)
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Comparison with the character table for D5h (Atkins et al. 1970) shows that
G(fD), the representation of the Danzerian freedom of the truss, is the doubly

degenerate E 0

1. In terms of the reducible representations that appear in (2.6),

GðjÞZ 3A0
1 C2E 0

1 C2E 0
2 C2A00

2 CE 00
1 CE 00

2 ;

GðbÞZ 2A0
1 CA0

2 C3E 0
1 C3E 0

2 CA00
1 C2A00

2 C3E 00
1 C3E 00

2 ;

GT ZE 0
1CA00

2 ;

GR ZA0
2 CE 00

1 ;

G0 ZA0
1;

the result GðfDÞZE 0
1 follows from substitution in (2.6) and application of the

rules for symmetry products.
Hence there is at least a two-parameter mechanism. A general distortion

within this space of mechanisms will reduce the symmetry of the truss to Cs

(the kernel (McDowell 1965) of E 0
1 in D5h is Cs). However, a distortion within the

space can be chosen to preserve a sv mirror plane, reducing the symmetry to
the intermediate group C2v (a co-kernel (McDowell 1965) of E 0

1 in D5h is C2v).
Within D5h symmetry, it is not possible to improve the Jucovič solution by
adding sets of (symmetry-equivalent) edges. Danzer’s solution makes the
minimum reduction in symmetry, to C2v, and has a set of four edges, forming
an orbit of C2v. The application of (2.6) to the C2v Danzer arrangement is given
explicitly in tabular form below, with a setting of the group such that the
preserved C2 axis is z and the old C5 axis is x.

Comparison with the character table for C2v (Atkins et al. 1970) shows that
G(fD), the representation of the Danzerian freedom of the truss, is KA2KB1.
The scalar rule has shown that the final arrangement has at least two states of
self-stress and the symmetry rule now shows that neither is totally symmetric.

This result could have been obtained more elegantly by considering descent in
symmetry. We observe that E 0

1 in D5h becomes the reducible representation
A1CB2 in C2v. The four additional edges in Danzer’s improved arrangement are
equivalent under the operations in C2v and span A1CA2CB1CB2, and hence
G(fD) for this arrangement is seen to reduce to be KA2KB1.
Proc. R. Soc. A (2008)
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Figure 2. Packing graphs for 27 circles. (a) The suboptimal D5h arrangement found by Goldberg
(1967a) and (b) the improved C2v arrangement found by Tarnai & Gáspár (1983a). The dashed
lines in (a) represent the edges that form as the arrangement is deformed to that of (b).

P. W. Fowler et al.3244
This case has the simplifying feature that there is only one co-kernel in the
space of mechanisms, i.e. there is a single high-symmetry path away from the
initial configuration. The mechanism distortion space is defined by two
parameters, and the E 0

1 symmetry of the mechanisms is the same as that of a
pair of translations that can be chosen to be along the two directions in, and
perpendicular to, a given sv mirror plane. If we choose to follow only the ‘in-
plane’ pathway, the arrangement retains C2v symmetry.

Given that in the Danzer C2v arrangement, fD is negative and G(fD) is a purely
negative sum of irreducible representations, there is no indication of a need for
further descent in symmetry below C2v. In principle, a complete geometric
analysis could reveal further ‘hidden’ mechanisms, if there were any, but Danzer
(1963) gives a proof that the C2v arrangement is a true local optimum.
(b ) Packing of 27 circles

The packing of 27 circles has features in common with the 17-circle case.
Goldberg (1967a) proposed a solution with D5h symmetry, illustrated in
figure 2a. The packing graph has bZ50 edges and all faces are again (spherical)
rhombi. The jZ27 vertices are arranged in four orbits: an antipodal pair on the
fivefold axis; a set of 5 on the equator; and two sets of 10, where each set lies on
the vertices of a different pentagonal prism. The edge length in the graph is
40840039.200.

Application of (2.1), fDZ54K50K2Z2, implies that this graph is not rigid.
Tarnai & Gáspár (1983a) found such an improved solution (figure 2b), which has
C2v symmetry, and corresponds to the addition of two edges (shown as dotted
lines in figure 2a) to Goldberg’s arrangement; the graph is now Danzerian rigid,
with fDZ0. The edge length (Tarnai & Gáspár 1983a) is 40840039.400. Coxeter
Proc. R. Soc. A (2008)



Figure 3. Schematic (non-stereographic) Schlegel representations of packings of 20 circles. Solid
lines show edges common to D6h (Rutishauser 1945) and D3h (van der Waerden 1952) packings and
dashed lines indicate the three extra edges of the D3h arrangement. The two isolated filled circles
represent rattlers.

3245Symmetry treatment of Danzerian rigidity
(letter of 20 July 1983 to T.T.) described this change of one-fifth of a second of
arc as ‘surely the smallest angle that ever played a significant role in geometry!’.
The solution found by Tarnai & Gáspár (1983a) remains the best-known solution
(Sloane et al. 2000).

The application of (2.6) to the Goldberg arrangement gives GðfDÞZE 0
1, and

hence there is at least a two-parameter mechanism. Tarnai & Gáspár’s solution
makes the minimum reduction in symmetry, to the co-kernel C2v, by the addition
of a pair of edges. These edges span the symmetry A1CB2 that exactly cancels
the E 0

1 symmetry of the mechanisms on the descent from D5h to C2v. Thus
G(fD)Z0 for Tarnai & Gáspár’s solution.

In both the cases jZ17 and 27, the initial value of fDZ2 leads to the
expectation that two additional bars will appear in the improved solution. The
symmetry viewpoint leads us to expect additional bars to appear in whole orbits,
which here must be of size two or four. The cases jZ17 and 27 provide an
example of each.
(c ) Packing of 20 circles

Rutishauser (1945) proposed a solution for 20 circles illustrated in figure 3.
A subset, consisting of 18 of the circles and their 36 contacts, defines a D6h

packing graph—the remaining two circles are ‘rattlers’ in hexagonal holes at the
poles of the unit sphere. The rattling circles make no contribution to the rigidity
analysis and so j is effectively reduced to 18. The edge length in the graph can be
calculated as 46.674628Z4684002900.

From the point of view of predicting whether this arrangement is improvable,
application of the scalar counting rule (2.5) is uninformative: fDZ2!18K36K2Z
K2 simply tells us that any mechanisms of this truss, if any, are outnumbered by
states of self-stress. Counting alone cannot decide whether such mechanisms
Proc. R. Soc. A (2008)
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exist. Symmetry can tell us more. The analysis set out in tabular form above
yields GðfDÞZB1uKB2uKE1g, showing that the count mKsZK2 is made up of
a mechanism (of symmetry B1u) and three states of self-stress (one of symmetry
B2u and a pair of symmetry E1g). Distortion along the B1u pathway lowers
the symmetry to the kernel group, D3h. This mechanism is finite, as in
the lower group it is not blocked by an equisymmetric state of self-stress
(Guest & Fowler 2007).

van der Waerden (1952) found an improved arrangement for 20 circles, of D3h

symmetry. It includes three extra edges (dashed lines in figure 3) and retains the
two rattling circles of Rutishauser’s solution. The edge length is 47825051.700.
The analysis of the rigidity in the D3h arrangement can be carried out by
modifying the above tabulation (columns corresponding to symmetries lost in
D3h are struck out and the entry for G(b) is changed). More directly, we note that
B1u, B2u and E1g in D6h descend to A0

1, A
0
2 and E00 in D3h, respectively. The orbit

of three additional edges spans A0
1CE 0. The application of (2.6) to van der

Waerden’s arrangement gives GðfDÞZKA0
2KE 0KE 00, fDZK5, and symmetry

detects no further mechanisms. The solution found by van der Waerden (1952)
remains the best so far (Sloane et al. 2000).

In general, counting arguments alone can never predict improvability of an
overconstrained arrangement, but, as the case of 20 circles shows, symmetry can
reveal the presence of hidden mechanisms, and hence give a direction for the
exploration of possible improvements.
(d ) Packing of 32 circles

A symmetry-based approach, naturally enough, is likely to give most
information for the arrangements of high symmetry. In this respect, the case
of 32 circles provides a good example, with a rich structure of candidate
solutions, which are investigated in detail in the present section.

Schütte & van der Waerden (1951) proposed an arrangement of 32 circles with
full icosahedral (Ih) symmetry and edge length 37822038.500. The packing graph is
the skeleton of the rhombic triacontahedron (illustrated in figure 4) with two
orbits of vertices (12 at the vertices of an icosahedron and 20 at the vertices of a
dodecahedron) and a single orbit of 60 edges. The 30 faces are all spherical
rhombi centred on the edge mid-points of the icosahedron/dodecahedron. Scalar
counting gives fDZ2. As there is no irreducible representation of dimension 2 in
Proc. R. Soc. A (2008)



3247Symmetry treatment of Danzerian rigidity
Ih, and as the positions of the vertices are fixed if icosahedral symmetry is
retained, this count of C2 immediately indicates that the arrangement must
support both mechanisms and states of self-stress.

Comparison with the calculation tabulated above reveals that GðfDÞZ
HuKT2u, and thus that there is a fivefold degenerate mechanism of symmetry

Hu. Given the existence of a mechanism, the arrangement should be improvable.
If we analyse the subgroup structure of the Ih group, we find that Hu has
co-kernels D5, D3, C5, D2, C2v, C3 and C2 and kernel C1. The existence of multiple
co-kernels offers several possible directions for the optimization search to
take, and among the co-kernels, D5, D3, D2 and C2v have a special status, in
that they are not subgroups of other co-kernels. A reasonable heuristic would
be to consider possible arrangements of 32 circles with one of these four point-
group symmetries.

Leech (1957) noted that the fully icosahedral arrangement could be improved
by twisting about a C5 axis, and Goldberg (1967a) obtained a locally optimal
solution with D5 symmetry, in which five extra edges appear (alternate
equatorial edges of the underlying dodecahedron), as shown by dashed lines in
figure 4a. The edge length is 37825050.900. The application of (2.6) to the Goldberg
arrangement, with

GðjÞZ 4A1 C4A2 C6E1C6E2 and GðbÞZ 7A1 C6A2C13E1 C13E2;

gives GðfDÞZKA2KE2, fDZK3. Symmetry detects no further mechanisms and
gives no reason to proceed to subgroups of D5. It can be shown that the D5

structure is indeed a local optimum. Following Tarnai & Gáspár (1991), we
model the packing as a structure that consists of straight bars and frictionless
pin joints, lying on the surface of a sphere. Explicit structural calculations at
the packing geometry confirm the absence of mechanisms; there is a state of
self-stress in which all edges of the packing graph are in compression, and this
confirms the local optimum character of the D5 arrangement.

Danzer (1963, 1986) improved the icosahedral arrangement by twisting about
a C3 axis, and obtained a locally optimal solution with D3 symmetry, in which six
additional edges appear, as shown by dashed lines in figure 4b. The edge length
in the improved arrangement is 37828030.800. Application of (2.6) to Danzer’s
Proc. R. Soc. A (2008)
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Figure 4. Packing graphs for 32 circles, shown as modifications of stereographic projections of the
Ih-symmetric Schütte & van der Waerden (1951) arrangement, as viewed along: (a) a fivefold axis
with the five extra edges in the D5 arrangement (Goldberg 1967a), (b) a threefold axis with the six
extra edges of the Danzer (1963) arrangement, and (c,d ) a twofold axis with the extra edges of the
D2 and C2v locally optimal arrangements identified in the present work indicated by dashed lines.

P. W. Fowler et al.3248
arrangement, with

GðjÞZ 6A1C6A2 C10E and GðbÞZ 11A1 C11A2 C22E;

gives GðfDÞZK2A2KE, fDZK4, and symmetry detects no further mechanisms
and hence gives no reason to proceed to subgroups of D3. As in the D5 case,
structural calculations confirm the local optimum nature of this D3 arrangement.
Proc. R. Soc. A (2008)



3249Symmetry treatment of Danzerian rigidity
However, our group-theoretical analysis indicates two other descent-in-
symmetry branches that are potentially interesting. Of the four maximal
co-kernels of Hu in Ih, the Goldberg solution preserves the D5 co-kernel and the
Danzer solution preserves D3. The two unexplored branches, D2 and C2v involve
co-kernel groups where the maximum order of a rotational axis is 2. In D2

symmetry, the 60-edge arrangement proposed by Schütte & van der Waerden
(1951) has

GðjÞZ 8AC8B1 C8B2 C8B3 and GðbÞZ 15AC15B1C15B2 C15B3;

obtained from the E and C2 columns of the Ih table 4. Equation (2.6) gives
G(fD)Z2A. Thus there are two mechanisms, and two orbits of edges (sets of
symmetry-equivalent edges) are required to reduce fD to zero and to make the
packing Danzerian rigid. Explicit optimization of packings within D2 symmetry
constraints, using the technique described in Tarnai et al. (2003), finds an
optimum packing in which eight edges have been added to give a total of 68. The
extra edges fall into two sets of four, each of which spans the regular orbit
(Fowler & Quinn 1986); all eight are shown by dashed lines in figure 4c. The
edge length is 37827052.600. When the additional edges are included in the
computation, the Danzerian representation becomes GðfDÞZK2B1K2B2K2B3,
guaranteeing the presence of at least six states of self-stress, indicating a highly
overconstrained packing. We note that the edge length in this packing is
intermediate between those of Goldberg’s and Danzer’s arrangements, and the
packing itself satisfies both the scalar and symmetry-adapted criteria of
Danzerian rigidity. As in the D5 and D3 cases, structural calculations confirm
the D3 local optimum. Interestingly, this arrangement has more edges (68) than
Danzer’s better, 66-edge arrangement (and, as an aside, suggests an alternative
formulation of the packing problem: find the maximally overconstrained, locally
optimal, packing of n spherical caps on a sphere).

The second alternative branch preserves C2v symmetry. Direct descent in
symmetry from the Ih arrangement gives G(fD)Z2A2. Thus here, there is
no internal evidence from the symmetry treatment that distortion along a
C2v-symmetric coordinate will improve the icosahedral arrangement. At most we
can say that, if there is a distortion mode that is totally symmetric in C2v, it is
balanced by an equisymmetric state of self-stress. Nonetheless, an explicit
optimization of packings within C2v symmetry constraints does yield a new
arrangement, with edge length 37824034.800, also intermediate between those of
Schütte & van der Waerden (1951) and Goldberg (1967a). The single additional
edge is shown by dashed line in figure 4d. As only one extra edge has been added,
the scalar count (2.5) gives fDZ1, implying that the arrangement is improvable.
Structural calculations at the C2v packing geometry confirm the presence of the
four mechanisms predicted by symmetry, and no more. Structural computations
show that, for any combination of states of self-stress that leave all contact edges
in compression, the (infinitesimal) mechanisms have negative geometric stiffness
and hence the configuration is unstable. Thus the C2v arrangement is an
optimum only under the constraints of C2v symmetry; when these are removed,
better solutions can be found. The symmetry extension (2.6) would suggest
descent to the C2 subgroup. In fact, optimization with C2 constraints returns the
arrangement to that found by Danzer (1963), which is of D3 symmetry (and
hence has C2 as a subgroup symmetry).
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Figure 5. Packing graphs for 18 circles. (a,b) A stereographic projection of the D4d Kólya–Goldberg
arrangement (Strohmajer 1963; Goldberg 1965), with dashed lines indicating, respectively, the
additional edges of the C2 arrangement found by Tarnai & Gáspár (1983a) and that found in the
present work. (c) A stereographic projection of the Tarnai & Gáspár (1983a) arrangement, viewed
along the C2 axis.
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In summary: of the four descent-in-symmetry branches leading to maximal
co-kernels of Hu in Ih, three have terminated in locally optimal packing
arrangements, only two of which have been identified previously in the literature.
(e ) Packing of 18 circles

Strohmajer (1963) reported that Kólya had constructed a packing arrange-
ment of 18 circles with D4d symmetry: the same arrangement with edge length
4983305.700 was independently reported by Goldberg (1965) and is shown in
figure 5. Analysis using (2.6) gives G(fD)ZE1, fDZ2, suggesting that this
arrangement is improvable. Tarnai & Gáspár (1983a), motivated by physical
arguments, found a better arrangement (figure 5c) with C2 symmetry and an
edge length of 49833024.000. The effect of the additional edges is to change G(fD) to
the null representation and fD to zero.

C2 is one of two co-kernels ofE1 inD4d. The other isCs. Exploration of this branch
gives rise to an interesting confirmation of the ‘almost conjecture’ of Danzer.
Optimization of packings within Cs symmetry constraints finds an arrangement
with a single edge additional to those of the Kólya–Goldberg arrangement, shown in
figure 4c. The edge length is 49833021.200, intermediate between the Kólya–Goldberg
and Tarnai–Gáspár arrangements. With 32 edges, the Kólya–Goldberg arrange-
ment, considered in the Cs subgroup, has GðfDÞZA0CA00, fDZ2; addition of the
edge changes this to G(fD)ZA00, fDZ1. Prima facie, the non-zero value of fD would
indicate an arrangement that is locally improvable by a symmetry-breaking
Proc. R. Soc. A (2008)
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distortion. A structural calculation of the type used above for the case of 32 circles
confirms here that the Cs arrangement is unstable against distortion to C1; under
the Danzerian state of self-stress, in which all contact edges are in compression, the
single mechanism predicted by counting has negative geometric stiffness (Guest
2006), showing the arrangement to be unstable.

(f ) Packing of 80 circles

A packing arrangement for 80 circles was suggested by R. M. Robinson (1966,
unpublished manuscript). It has Ih symmetry, and its graph can be derived from
that of the truncated icosahedron by adding an isolated point on each hexagonal
face. The edge length is 23816053.200. Tarnai & Gáspár (1983a) noted that this
could easily be improved by connecting each of Robinson’s rattlers to three
neighbours by making a concerted rotation of all hexagon–hexagon edges of the
underlying truncated icosahedron and simultaneously increasing the circle
diameter. This distortion, of Au symmetry in the parent Ih group, reduces the
symmetry of the arrangement to I and gives a packing with edge length
23817048.600.

What can symmetry arguments tell us about the prospects for improving yet
further on this solution? There are 150 edges in the packing graph that therefore
has fDZ8. Use of (2.6) gives GðfDÞZT2CH . All the axial subgroups of I
(C5, C3, C2) are co-kernels of T2, and all the dihedral subgroups (D5, D3, D2) are
co-kernels of H, leading to an embarrassingly large choice of directions for
exploration. An improvement of the I-symmetric solution, with six additional
edges, and edge length 2381807.300 was subsequently found (Tarnai & Gáspár
1983b). This arrangement has D3 symmetry, with G(fD)ZE, fDZ2. Both the
Danzer count and its symmetry extension suggest that this can be further
improved. However, it turns out that a better solution, the best obtained so far
for 80 circles, cannot be derived from the I solution (or, therefore, the D3

solution) by the addition of edges. The current best solution has 164 edges, edge
length 23833011.000, and is listed in Sloane’s catalogue (Sloane et al. 2000), where
it is attributed to J. Buddenhagen. This graph has D2 symmetry, fDZK6 and
GðfDÞZK2B1K2B1K2B1, so that from the point of view of Danzerian rigidity,
this overconstrained graph gives no indication of further improvability.

In summary, at least in the present state of knowledge of this problem, the
best solution is the one that could not have been predicted starting from the
earliest proposed solution by the use of the Danzerian heuristic alone. (The fact
that the Buddenhagen graph cannot be derived from the I solution by edge
addition alone is easily checked: the I-symmetric solution has 15 C2 axes, each
one passing through the mid-points of two edges; the D2-symmetric solution has
three C2 axes, each one passing through a pair of face centres.) This is not a
criticism of the heuristic itself, merely a salutary reminder that when using a
method based on local optimization, it may be impossible to reach a global
minimum that belongs to another region of the solution space.

(g ) Packing of five circles

The packing of five circles was discussed in Tarnai & Gáspár (1983a). Its
packing can be derived from the octahedral six-circle packing without the change
of radius by removal of one equatorial circle, to leave fixed circles at the North
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and South Poles, and three circles that are free to move along the Equator. The
arrangement is non-rigid, but it cannot be improved, even though the generic
packing graph has only six longitudinal edges, and hence fDZ2. In the maximal
D3h symmetry, G(fD)ZE 0, representing the symmetric and anti-symmetric
motions of the triplet of equatorial circles. Geometric symmetry can be lowered
to C2v and Cs by these motions, but the circles cannot be enlarged.

This is the special case that blocks any very general version of the Danzer almost
conjecture, and implies that there must be difficulties in extending Connelly’s (1984,
1988, in press) theorem for the packing of circles in a concave container to spaces of
constant positive curvature: there is at least one case where the packing graph is not
(infinitesimally) rigid for a locally maximal dense packing.
4. Conclusion

The present paper has shown the usefulness, and also some of the limitations, of
combining symmetry-based analysis with Danzer’s concept of rigidity, and using
these tools to study circle packings. The symmetry-adapted analysis has given
new insight into the historical development of improved circle packings that were
found through symmetry breaking from an initial high-symmetry arrangement—
in each of these cases, the symmetry-adapted Danzerian rigidity criterion has
shown the initial high-symmetry arrangement not to be rigid. In the particular
case of the packing of 32 circles on the sphere, the analysis has also found a new,
locally optimal packing that, although not globally optimal, is more over-
constrained than the current best-known arrangement.

P.W.F. acknowledges the support from the Royal Society/Wolfson Research Merit Award Scheme.
T.T. is grateful for the financial support under OTKA grant T046846.
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