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Summary 
Tensegrity grids, with tensed cables and isolated struts, have strong aesthetic appeal, but have had 
limited architectural engineering applications. The present study investigates a promising 
application: the use of a tensegrity grid as supporting structural system for double-skin glazing 
systems.  
The system considered consists of two layers of glass panels sandwiching a core modular tensegrity 
grid.  The tensegrity grids consist of steel compression tubes and steel tension cables designed to 
pre-stress the glass supporting system. The use of structural glass is central to the design as the 
glass plays a double role in the structural system. Apart from their functional purpose (thermal 
insulation, visual transparency etc.), the glass panels also serve structural purposes acting as load 
bearing structural elements integrated with the tensegrity supporting system.  
The paper will consider the advantages of a tensegrity system, both from a functional and structural 
perspective, as well as considering aspects of assembly and pre-stressing. 
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1. Introduction 
Could tensegrity structures be part of the construction industry through an interesting novel 
application? Although tensegrity structures are fascinating and favoured by architects and artists, 
their application in the engineering field is rather limited. Their singular morphology, complex 
geometry, constructability and limited structural redundancy have suppressed their use in any single 
branch of the construction industry. However, recent investigations have shown that tensegrity 
systems have the potential to serve numerous engineering applications such as solar collector space 
grids, pedestrian bridges etc. [1-2]. 
As an answer to above question the present paper aims to investigate and draw some interesting 
inferences concerning the potential of double-layer tensegrity grids as structural façade enclosures 
through a specific case study. The novelty of such an application is further enhanced by using a 
‘brittle’ material such as glass to act as a structural component in to the system. The application 
proposed is the use of glass panels as structural components forming the top and bottom layers of a 
double-layer tensegrity grid in order to create a double-skin glass façade with interesting structural 
properties. The latter application is described through a case study were a double-skin glass façade 
wall spans a large area which could possibly be a face of an atrium in a tall building or a face of an 
airport lounge.  
 



2. Double-skin tensegrity glass façade proposal 

2.1 The glass panelling concept 
Advances in glass façade technology have shown that the double-skin glass facades present 
improved thermal and acoustic properties compared with the conventional single skin glass facades 
[3].  However, the need for more efficient structural enclosures for the double-skin glass facades 
remains unsatisfied since the existing ‘open’ systems require the use of large profile anchorage 
structures to counterbalance the pre-stressing forces. In this context an inverse bidirectional 
tensegrity grid (Figure 1-a) acting as a ‘closed’ structural system is used to replace the conventional 
one. Furthermore, for the sake of structural efficiency and enhanced visual transparency, an attempt 
for dematerialisation is made replacing the top and bottom layers of strut elements from the 
tensegrity grid by glass panels which aim to act as structural components (Figure 1-b). Recent 
advances in structural glass have shown a great potential of using glass as a structural material with 
commendable structural properties [4]. Thus, the glass panels will play a double role in this study 
acting both as a skin and a structural component resisting mainly compressive forces resulting from 
the applied pre-stress in the structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 The double-skin tensegrity façade wall 
The double-layer façade wall investigated is a 16m×12m structure aiming to serve as the glazing 
face of an atrium in a tall building or the facade of an airport lounge. The proposed case study 
considers an 8×6 module double-layer grid glass façade composed of 2m×2m×1m modules 
accommodating 2m×2m square glass panels as shown in Figure 2. The façade structure comprise 63 
compression struts, 96 tension rods and 96 square glass panels connected with rest of the structural 
members through four-way spider fittings as shown (Figure 1-b). The struts and the rods are made 
of S335 stainless steel and the glass panels from toughened glass, having similar coefficients of 
thermal expansion avoiding possible uneven length changes due to temperature changes. 

Figure 1: Representation of a 2×2 module tensegrity basic unit (a) and a tensegrity module with top 
and bottom glass panel layers (b). 

(a) 
(b) 



 

3. Analysis of the double-skin tensegrity glass façade 
Analysis of façade wall was carried out in two steps. The first part includes the analysis of the 
inverse bidirectional tensegrity grids in order to determine some of their structural properties. The 
second part is the static analysis and preliminary design of the façade wall according to the load 
cases retrieved from the Eurocode. 
3.1 Analysis of tensegrity grids 
For the present study, analysis of tensegrity structures is carried out using a computational model 
for pin jointed frameworks, as formulated by Pellegrino (1993), using the singular value 
decomposition (SDV) of the equilibrium matrix to determine the states of selfstress s and the 
internal mechanisms m of the tensegrity model.   

3.1.1 Analysis of the 2×2 module basic tensegrity grid  
The tensegrity system considered for the analysis is an inverse bidirectional grid (Figure 1-a) 
augmented by planar diagonal struts which aim to replace the glass panels accommodated on the 
top and bottom layers of the grid. The augmented basic grid is a 2×2 module grid used to form a 
large multi-modular tensegrity grid comprising 18 nodes and 53 elements. The augmented basic 
unit is composed of 12 tension rods (black lines) and 41 compression struts as shown in Figure 3. 
 
 
 
 
 
 
 
 
 

Figure 2: Architectural rendering of the glass façade modules in side and isometric view (left, 
top and bottom) and the 192m2 glass façade wall (right) in isometric view. 

Figure 3: Representation of the augmented basic tensegrity unit. 



From the analysis carried out on the basic unit it is eminent that this structure is stabilised by five 
state of self-stress s=5 and the number of infinitesimal mechanisms m=0. The latter information 
implies that the basic unit shows a stiff behaviour having been augmented with the glass panels and 
that may be capable resisting external loads with minimum deflections. The existense of the 5 state 
of self-stress clearly shows that it is possible to stabilise the system through a symmetric pre-
stressing pattern which will induce stress in the structural elements. In this case a stabilising self-
stress state can be achieved through a pre-stressing pattern where all the vertical struts are 
lengthened. The induced state of self-stress achieved by the latter pre-stressing patern is shown in 
Figure 4 where the elements undergoing tension and compression are coloured by yellow and red 
fills. A rather interesting information from Figure 4 is that all the tension elements are in tension 
and the bars aiming to replace the panels are in compression. The latter is obviously positive since 
the glass panels are capable resisting large compressive forces [4]. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

3.1.2 Analysis of the 8×6 module tensegrity grid  
The 8×6 module grid is composed of twelve 2×2 module basic tensegrity grids, packed as shown in 
Figure 5. The aforementioned structure is composed of 126 nodes and 489 elements of which 96 are 
tension elements. From the analysis it was observed that the structure possess s=117 and m=0. The 
latter results imply that the structure is rigid with a high degree of redundancy. In practice, a 
possible state of self-stress stabilising the system could be achieved by a pre-stressing pattern which 
includes the lengthening of all the vertical struts. Such a pre-stressing pattern would provide 
stability by inducing tension in the tension rods, compression in the vertical and planar diagonal 
struts meaning that glass panels will undergo in-plane compressive forces. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: A stabilising state of self-stress induced by the lengthening of the vertical compression struts. 

Figure 5: The 8×6 module tensegrity grid spanning the 
 



3.2 Static analysis of the tensegrity glass façade wall 
For the static analysis of the tensegrity glass façade, a computational model based on the principles 
of linear elasticity was used accounting the pre-stress of the system and the external design loads. 
Compression steel struts and steel tension rods were assigned in the model as well as thin shells as 
glass panel sections. Additional FE analysis was performed on the glass panels due to their central 
role for the integrity and stability of the structure since they are designed to act as structural 
elements resisting large in-plane compressive forces.  

3.2.1 Pre-stressing 
For the present computational model the pre-stress is applied through the lengthening of adjustable 
length compression struts. The amount of length extension applied was e=5mm considering three 
parameters: the amount of load applied on the structure, the allowable deflection and the fact that 
the tension bars should be prevented undergoing any compressive loads (avoid slack tension bars or 
de-tensioning). 

3.2.2 External loading & load cases 
The loads considered for the tensegrity façade wall apart from the pre-stress are the wind loads 
(WL), the self-weight of the structure (SW) and temperature changes (T). The magnitudes of the 
values and the allowable deflection criterion set for the present structure are listed in Table 1. The 
two load cases considered for the analysis were in accordance with the European code for loading 
of structures, Eurocode 1 and they are listed in Table 2. 
 

 
 
 
 
 
 
 
 

 
3.3 Computational analysis and results 
The computational model was analysed for the load cases shown in Table 2. From the analysis it 
was deduced that load case (1) was the most critical load case in terms of magnitude of loads 
applied on the members, whereas, load case (2) was the most critical for the analysis of the glass 
panels. Although the amount of external loads applied on the structure was extreme, the 5mm 
length extension applied on the compression strut was enough to maintain the amount of de-
tensioning and span deflection of the structure to minimum. Thus, all the tension rods and 
compression struts were successfully remained in tension and compression respectively as shown in 
Figure 6.  

3.3.1 Worst case scenario for struts and rods 
In addition to the normal load cases, an extreme load case scenario was considered where during the 
extreme load case (1) a glass panel is removed from the most critical area of the structure (Figure 6). 
In this case the loads carried by the members increased slightly comparing to the ones found when 
the glass panel was not removed. From the latter analysis results obtained for this case it can be 
deduced that the tensegrity glass façade has a degree of structural redundancy which prevents the 
exertion of high internal forces and significant deflections due to the loss of a glass panel validating 
the results of the analysis of the tensegrity model (see section 3.1.2, s=117).  
In this case the maximum force carried by a tension rod and a compression strut was approximately 
298 kN and 167 kN tension and compression respectively as shown in Figure 6. The windward 
force applied on the structure caused a maximum deflection of 4.7mm (Figure 7, U2) which is well 
below the allowable deflection criterion shown in Table 1.   

Table 1: Applied loads. 
WL 1.0 MPa 
DL 1.0×10-3 MPa 
T ±15oC 

L/D span/250 
e 0.005 m 

Table 2: Load cases. 

1.4•DL + 1.4•WL + Pre-stress                 (1) 

1.2•DL + 1.2•WL + 1.2•T + Pre-stress     (2) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.2 Worst case scenario for glass panels 
From the analysis of the façade wall it was observed that the maximum load applied on the glass 
panels was during an extreme load scenario where the structure was loaded with load case (2) and 
the most loaded glass panel was removed. The glass panel undergoing the maximum load was the 
panel shown in Figure 8 which was subjected in excessive in-plane compressive forces in the Z and 
X directions and it is located next to the missing panel. The latter has a high slenderness and when 

max tension = 298.1kN 

max compression = -167kN 

missing glass panel 

Figure 6: Axial force diagram indicating the members in tension (yellow), the members in compression 
(red) and the maximum tension and compression values for the extreme load case. 

Figure 7: Deformed shape indicating the maximum lateral deflection U2=0.0047m and the most loaded 
panels on the façade wall. 



subjected to high in-plane compression loads – such as the load case represented in Figure 8, the 
glass elements tend to fail because of instability i.e buckling. The load case for the panel under 
investigation, figure 8 has been numerically modelled as a single layered 19mm thick glass with 
four standard-sized bolt holes. A planar countersunk stainless steel bolted connection has been 
proposed since it allows direct load transfer through bearing of the glass on the bolt with a nylon 66 
boss used as a liner material to avoid direct steel to glass contact. The bolt assembly is fixed onto a 
spider support system which connects four bolts from corners of four adjacent panels. A two layer 
sandwich laminated safety glass panel would be most ideal but in this analysis, a single layered 
glass has been considered for simplicity. The panel has been numerically modelled as a thin shell 
QSL8 element which is suitable for analysis of arbitrarily curved shell geometries with the element 
formulation taking account of both membrane and flexural deformations, the analysis was run with 
a total  Lagrangian geometric nonlinearity option which is applicable for arbitrarily large 
deformations. Due to the excessive in-plane compression loads transmitted through the bolts 
especially on the left-hand side where an adjacent panel has failed, the results of the analysis show 
very high stresses in the glass with peak stresses of up to XXXMPa located at the YYY of the 
panel. This extreme loading case results in stresses higher than the characteristic strength of 
thermally toughened glass which is 120MPa [6]. It is worth noting however that this is the bending 
strength while the glass in this case is primarily subjected to compressive loading. 
A simplified buckling analysis of the single layered glass based on [7] reveal that for an applied 
axial compression, a solution for the elastic critical buckling load is exceeded and the maximum 
surface stress for the applied maximum load, also exceeds the characteristic strength of thermally 
toughened safety glass.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Whilst it is clear that under this extreme load case, toughened glass will fail to support the loads, it 
is also noted that resolving several issues in the design of the tensegrity grid would make it possible 
to use glass structurally. Some of these issues include, (i) possibly replacing bolted connections 
with linear adhesive connections on the panels to reduce stress peaks that otherwise arise in the 
vicinity of bolt-holes, (ii) laminating the glass and increasing the panel thickness to minimise the 
effect of slenderness and reduce the possibility of buckling and (iii) to reduce the panel size. 
3.3.3 Sizing of structural elements 
Tension and compression element sections were provided according to the results obtained from the 
worst case scenario. According to the member sections provided shown in Table 3, the weight of 
the actual structure was determined to be 107kg/m2 and the weight of the structural façade 
enclosure approximately 12kg/m2.  

X Y 

Z 

Figure 8: Graphical representation of the compressive loads (in kN) and the exact location of the highest loaded 
panel highlighted with red colour (left) and a contour plot indicating the levels of stress on that panel (right). 

Not final graph. 
 
The final will show 
contours with stresses on 
glass. 



Table 3: Sections provided for the tensegrity glass façade. 

 Max load (kN) Section assigned Section capacity (kN) 

Compression strut 165.8 
M36 CHS (mm) 

186 
od: 88.9 t: 5 

Tension bar 271.1 M36 Bar (mm) 376 dia: 34 

Glass panel (see section 3.3.2) Glass panel (mm) (see section 3.3.2) l×d: 2000×2000 t = 19 

 
4 Conclusions 
The results obtained from the investigation carried out on an 8×6 module inverse bidirectional glass 
panelled tensegrity grid showed that there is a potential using the latter as a double-skin façade. The 
analysis of the proposed system showed that the tensegrity system is capable to resist the design 
forces with lightweight sections undergoing negligible deflections. The pre-stressing pattern used 
was able to provide the amount of pre-stress required avoiding possible de-tensioning and 
significant deflections even in the extreme load cases. Although the glass failed to resist the severe 
compressive forces in an extreme load case scenario, there are options to follow in order to avoid 
the glass failure. To summarise, the tensegrity glass façade from an engineering point of view 
showed: 

• Minimum deflections for a long span using light sections and avoiding any mid-span 
supports or anchorage structure; 

• High degree of redundancy through a large number of self-stress states; 
• That glass panels failed to resist high compressive forces; however, there are options to 

increase the capacity of glass in the façade system. 
Whereas from an architectural and environmental point of view the observations are: 

• Improved transparency using large size panels supported through a lightweight structural 
enclosure; 

• Dematerialisation using glass as a structural component; 
• Advanced thermal and acoustics properties due to the double-skin nature.  
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