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Thin cylindrical shell structures can show interesting bistable behaviour. If made
unstressed from isotropic materials they are only stable in the initial configuration, but if
made from fibre-reinforced composites they may also have a second, stable configuration.
If the layup of the composite is antisymmetric, this alternative stable configuration forms
a tight coil; if the layup is symmetric the alternative stable configuration is helical.
A simple two-parameter model for these structure is presented that is able to distinguish
between these different behaviours.
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1. Introduction and background

This paper presents simple analytical models for a class of thin shell structures
that have the interesting and useful property of bistability. These structures
have the same initial geometry as a standard, steel tape measure: they are
straight in the longitudinal direction and have a curved cross-section. However,
unlike a tape measure, these structures are stable both in the unstressed, straight
configuration and also in a coiled configuration. The bistability in the structures
that we consider is engendered by specifying certain relative bending stiffnesses
of the shell using, for instance, fibre-reinforced composites. An alternative
technique for making these structures bistable, by setting up an initial state of
self-stress in the shell, is described by Kebadze et al. (2004).

Recent work on bistable cylindrical shells (Iqbal & Pellegrino 2000; Iqbal et al.
2000; Galletly & Guest 2004a,b) has generated a number of analytical and
computational models that capture various aspects of their behaviour, with
varying degrees of detail and accuracy. However, none of these models is
sufficiently compact to be able to capture all of the key effects in a set of analytical
expressions. Hence, starting from the observation that many features of interest
can be captured by a model that considers only uniform, inextensionally deformed
configurations of the shell, a newmodel is presented that expresses the equilibrium
and stability conditions of the shell in terms of only two parameters.

The paper is laid out as follows. Section 2 introduces the geometry and
material properties of the structures to be studied. Section 3 outlines a previously
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Figure 1. A bistable shell shown in its initial and coiled configuration. Two lines are marked on the
shell: they are straight initially, and form circles in the coiled configuration.

S. D. Guest and S. Pellegrino840
developed analytical model for bistable shells which allows both extension and
bending to take place in the shell. On the basis of results obtained from this
model, it is then argued that an inextensional model that includes twisting will
provide a more complete description of the required behaviour, but still in terms
of only two geometric parameters. Section 4 presents this new model, and derives
analytically the equations that need to be solved to find all of the equilibrium
configurations of a cylindrical shell. An analytical criterion for stability is also
derived. Four examples are then presented and discussed in detail. Section 5
derives a simple stability criterion for shells where bending and twisting are
decoupled. Section 6 discusses an extension of the formulation in §4 that allows
uniform mid-surface strains of the shell. Sections 7 and 8 conclude the paper.
2. Bistable shells

Figure 1 shows a bistable cylindrical shell. It is made from a fibre-reinforced
composite, with the fibres arranged antisymmetrically with respect to the mid-
plane; this results in a structure that is stable in the two configurations shown.
Note that in the second configuration the structure is coiled, with a longitudinal
curvature that is in the same sense as the transverse curvature of the first
configuration, i.e. the centres of curvature in the two stable states are on the
same side of the structure.

It is rather unusual for a composite structure to be made from an
antisymmetric layup, but here this particular arrangement is chosen in order
to achieve a compact coiled configuration. If a model is instead made from a
symmetric layup, the second configuration would actually be twisted.

In this paper, it will be assumed that the structure is formed initially stress-
free in the extended state, shown in figure 2. In this initial configuration, it is
straight, has uniform cross-section and can be treated as linear-elastic and
infinitely long in the longitudinal x-direction. It has a radius of curvature of R in
the transverse, y-direction, and subtends an angle b.

The models described here will assume that the deformation of the structure is
uniform in the longitudinal direction, and, hence, make no attempt to model the
Proc. R. Soc. A (2006)
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Figure 2. The initial, stress-free configuration for a bistable shell.

841Bistable cylindrical shells
actual transformation from the extended to the coiled configuration, which in
reality takes place by a short transition zone moving along the structure.
Therefore, the models are trying to capture only the two extreme configurations.

The bending and stretching properties of the shell will be described in terms of
classical thin-plate lamination theory (Jones 1999). Hence, the coupled stress–
strain and moment–curvature relationships take the form of the standard ABD
matrix relating the generalized strain vector D½3x ; 3y;gxy; kx ; ky; kxy�T to the work-

conjugate generalized stress vector ½Nx ;Ny;Nxy;Mx ;My;Mxy�T
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Here, Dex, Dey, Dgxy are the mid-plane strains associated with moving from the
original configuration to any configuration of interest, and Dkx, Dky, Dkxy are the
corresponding mid-surface curvatures. (Note that (2.1) assumes that the twisting
curvature is defined as kxyZK2v2w=vx vy, where w is the displacement of the
surface in the out-of-plane direction. The plate and shell theory literature
conventionally defines kxy to be half this value; the connection is made in, e.g.,
Mansfield (1989), p. 25).

Four specific examples will be presented later on: one is an isotropic shell
(0.125 mm thick steel); the other three are orthotropic structures, with various
antisymmetric and symmetric layups, each made of five, 0.21 mm thick layers of
uniaxial glass fibres in a polypropylene matrix. The material properties are listed
in table 1, and table 2 shows the ABD matrices for the four examples.
Proc. R. Soc. A (2006)



Table 2. ABD matrices for four examples (all units are in GN, mm).

Table 1. Material properties (directions 1, 2 are along and perpendicular to fibres).

steel E 207 GPa
n 0.3

glass–polypropylene E11 27.6 GPa
E22 2.60 GPa
G 0.964 GPa
n12 0.305

S. D. Guest and S. Pellegrino842
3. Extensional bending model

A simple extensional bending model for bistable shells was first presented by
Iqbal & Pellegrino (2000). This model considers a general configuration of the
shell with uniform longitudinal curvature, kx and transverse curvature, ky, as
shown in figure 3. No twisting is allowed, i.e. kxyZ0 everywhere, and stretching–
bending coupling will be ignored when constructing the strain energy expression,
i.e. it will be assumed that BZ0.
Proc. R. Soc. A (2006)
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Figure 3. A shell with uniform curvatures kx and ky.

843Bistable cylindrical shells
Generally, in these configurations, the shell has both bending and stretching
strain energy. These energy terms have the following expressions, per unit area
(Mansfield 1989):

Ub Z
1

2
kTDk; ð3:1Þ

Us Z
1

2
eTAe; ð3:2Þ

where the bending stiffnesses of the shell are defined by the D-matrix portion of
the ABD matrix, which relates moments per unit length, mZ ½mx ;my;mxy�T,
and change of mid-surface curvatures, kZD½kx ; ky; kxy�T,

m ZDk ð3:3Þ

and the stretching stiffnesses of the shell are defined by the A-matrix portion

of ABD which relates in-plane forces per unit length, fZ ½fx ; fy; fxy�T, and
mid-surface strains, eZD½ex ; ey;gxy�T,

f ZAe: ð3:4Þ

Iqbal & Pellegrino (2000) integrated (3.1) and (3.2) over the cross-section of
the shell and obtained the following expression for the average strain energy per
unit area,
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ð3:5Þ

The terms in this equation can be written in non-dimensional form (written with
a hat) in terms of the bending stiffness in the x-direction, D11, and the initial
Proc. R. Soc. A (2006)
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Figure 4. The non-dimensional strain energy stored by the antisymmetric 458 layup for bZp.
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radius of curvature, R, as
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Figure 4 shows a contour plot of the values given by (3.6) for varying k̂x and
k̂y. The shell stiffness parameters chosen are those for the antisymmetric 458
layup (given in table 2), and the angle subtended by the cross-section is bZp.

There are a number of interesting points about the plot in figure 4. The first is
that it clearly shows the existence of two energy minima, one in the original
configuration, and another in the coiled configuration. Another observation is
that there is a severe energy penalty associated with stretching, rather than
bending, the mid-surface and hence the behaviour of interest is concentrated in,
or near the regions of the plot, where k̂x k̂yz0.

This extensional model may be misleading for more general material
properties, however, where the assumption that the shell does not twist cannot
Proc. R. Soc. A (2006)
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Figure 5. The coordinate system used in §4. Three shells are shown on an underlying cylinder of
radius 1/C.

845Bistable cylindrical shells
be justified. For example, for the symmetric 458 layup, exactly the same plot
shown in figure 4 would be obtained, but here the ABDmatrix shows bend/twist
coupling and twisted configurations of the shell should not be excluded. Further,
stability in torsion cannot be examined, which proves to be important for
isotropic shells.

Galletly & Guest (2004a) have extended this model to include twist, and thus
allow a distinction to be made between symmetric and antisymmetric layups.
This extended model also captures the unstable nature of the second equilibrium
configuration for unstressed, isotropic shells. However, the model is also fairly
complex, partly because it requires a third parameter to define the twist.

The clue to developing a simpler model is contained in the plot in figure 4. The
earlier observation that the interesting behaviour is concentrated, where k̂x k̂yz0
suggests setting up a model that assumes all deformations to be inextensional.
4. Inextensional model

This section develops a model that simplifies the analysis of the shells by
assuming that the mid-surface does not stretch. It will examine all possible
inextensional deformations that are everywhere uniform, and look for energy
minima in order to find stable configurations.

The initial configuration has principal curvatures k1Z1/R and k2Z0, and so
for inextensional deformation the Gaussian curvature (Zk1!k2) must remain
zero. This implies that all possible configurations must be developable (Calladine
1983). In this section we shall assume that the deformation of the shell is
everywhere uniform: this implies that for every possible configuration of the shell
there must be an underlying cylinder about which the shell is wrapped. Thus,
every possible configuration of the shell can be defined by two variables, one
defining the radius of this underlying cylinder, and the other defining the
orientation of the shell relative to the cylinder.

Figure 5 shows the coordinates that will be used in this section. The angle of
the shell relative to the cylinder, q, is defined so that qZ0 when the shell is
parallel with the axis of the cylinder. The principal curvature of the cylinder is C
and so the radius of the cylinder is 1/C.

For any C and q, the curvature of the shell in the x–y coordinate system shown
in figure 2 can be found using a Mohr’s circle (Calladine 1983), as shown in
figure 6. In the initial configuration, kxZ0, kyZ1/R, kxyZ0. In the final
configuration, kxZðC=2Þð1Kcos 2qÞ, kyZðC=2Þð1Ccos 2qÞ, kxyZC sin 2q.
Proc. R. Soc. A (2006)
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Figure 6. Mohr’s circle of curvature. The vertical axis is kxy/2 rather than kxy, as we are using the
lamination theory definition of twist.
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Thus, the changes in curvature are given by
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The bending strain energy per unit area, given by (3.1), can be written using
non-dimensional variables (again, written with a hat)
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To find stable equilibria, we look to minimize Û subject to the inextensional
constraint given in (4.1); i.e. we are looking for minima with respect to the two
variables q and Ĉ . We can explore variations in Û locally by considering the
change in energy, dÛ , for small variations in q and Ĉ , dq and dĈ , using the
Taylor’s series expansion (e.g. Riley et al. 1997) given by

dÛ Z
vÛ

vq
dqC

vÛ
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dĈ C

1

2
½ dq dĈ �

v2Û=vq2 v2Û=vq vĈ
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2
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5 dq

dĈ

" #
C/:

ð4:3Þ
To find equilibrium configurations of the structure, we look for points where

locally the energy has zero slope for changes in q and Ĉ , and hence the first two
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terms in (4.3) are zero. Differentiating (4.2) gives
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where from (4.1)
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Solving (4.4) will determine pairs of q and Ĉ that define equilibrium
configurations, but to check whether these are stable equilibria, we need to
check whether they correspond to local minima. This we do by considering the
next term in the Taylor series expansion (4.3), and check that

K̂ Z
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2

2
4

3
5; ð4:5Þ

is positive definite. Note that K̂ is a stiffness matrix for the structure.
The positive definiteness of (4.5) can be analysed by checking that
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The terms in these inequalities are given by
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vĈ
D̂

vk̂

vĈ
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Ĉ

2

4 cos 2q

K4 cos 2q

K8 sin 2q

2
64

3
75;

and

v2Û
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Figure 7. Polar plot of non-dimensional energy Û plotted as a function of Ĉ and q for the isotropic
shell example. Contours are plotted at ÛZ0:05; 0:1; 0:15;. . The two equilibrium points are
labelled M and N.
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The energy as a function of Ĉ and q, equilibrium points, and the stability of
these equilibria, will be considered for the four examples described in §2. Energy
will be plotted in each case on a polar plot for 0%2q!2p, which covers the
full range of possible positions, and for 0% Ĉ%1:5, which covers all of the
interesting behaviour for these examples.

(a ) Isotropic example

For the isotropic shell described in table 2, the non-dimensional D-matrix is
given by

D̂Z

1 0:3 0

0:3 1 0

0 0 0:35

2
64

3
75: ð4:10Þ

(In conventional plate and shell theory, the (3,3) term of this matrix is given by
1Kn, but here it is (1Kn)/2, as we are using the lamination theory definition of
twist.)

Figure 7 shows the non-dimensional energy, calculated from (4.2) for this shell;
there are two equilibrium positions, that have been labelled M and N. The first
equilibrium, M, is the original configuration, qZ0, ĈZ1, where clearly there is an
energy minimum. The second equilibrium, N, is at qZp/2, ĈZ0:3Zn; substi-

tuting these values into (4.4) will verify that this satisfies vÛ=vqZvÛ=vĈZ0.
Proc. R. Soc. A (2006)
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Although there is a second equilibrium point N, it is clear from the plot that
this point is a saddle point in the energy. This can be verified from (4.7) and (4.8),
which gives v2Û=vĈ

2
Z1, v2Û=vq2ZK0:42. Hence, this second equilibrium point is

not stable. This result can be verified by taking a length of steel tape measure
and attempting to coil it to a radius of about 1/3 the radius of the cross-section:
an unstable twisting mode can be observed.

As for all the energy plots in this section, there is an apparent maximum at
ĈZ0. However, this is an artefact of the way the plots are drawn, and is not an
equilibrium position. It can be readily verified that vÛ=vĈs0 at ĈZ0.

(b ) Antisymmetric 45 8 composite example

For the antisymmetric composite shell described in table 2, the non-
dimensional D-matrix is given by

D̂Z

1 0:766 0

0:766 0:977 0

0 0 0:785

2
64

3
75: ð4:11Þ

It is interesting to compare this matrix with that for the isotropic case. Because
of the antisymmetry, there is again no coupling between bending and twisting,
and the basic form of the matrix is the same, with D̂16ZD̂26Z0. The key
differences, however, are the approximate doubling of the relative coupling
between bending in the x - and y -directions, D̂12, and the approximate doubling
of the relative twisting stiffness, D̂66.

Figure 8 shows the non-dimensional energy, calculated from (4.2), for the
antisymmetric composite shell. There are now four equilibrium positions, labelled
M, N, P and Q. The first equilibrium, M, is the original configuration, qZ0, ĈZ1,
where clearly there is an energyminimum.The second equilibrium,N, is at qZp/2,
ĈZD̂12Z0:77; substituting into (4.4) will verify that this satisfies the equilibrium
conditions vÛ=vqZvÛ=vĈZ0.

The form of the contour plot shows clearly that N is a minimum, and this can
be verified by checking (4.7)–(4.9), which give v2Û=vĈ

2
Z1, v2Û=vq2Z1:24,

v2Û=vq vĈZ0. The third and fourth equilibrium positions, P and Q, are at
qZG0.30p, ĈZ0:52. These are clearly saddle points, and will not be explored
further.

(c ) Symmetric 45 8 composite example

For the symmetric 458 composite shell described in table 2, the non-
dimensional D-matrix is given by

D̂Z

1 0:766 0:397

0:766 0:977 0:397

0:397 0:397 0:785

2
64

3
75: ð4:12Þ

Figure 9 shows the non-dimensional energy, calculated using (4.2) for this case.
An interesting observation is that, because of the coupling between bending and
twisting, the symmetry of the plot about the lines qZ0, p/2 has been lost.
Proc. R. Soc. A (2006)
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Figure 8. Polar plot of non-dimensional energy Û versus Ĉ and q for the antisymmetric composite
shell example. Contours are plotted at ÛZ0:05; 0:1; 0:15;.. The four equilibrium points are
labelled M, N, P and Q.
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There are four equilibrium positions shown in figure 9, labelled M, N, P and Q.
The first is the original configuration, qZ0, ĈZ1, where clearly there is an
energy minimum. The other obvious equilibrium is at Q, where qZ0.72p,
ĈZ0:54; substituting into (4.4) will verify that this satisfies vÛ=vqZvÛ=vĈZ0.
However, at this position, from (4.7) and (4.8), v2Û=vĈ

2
Z0:86 and v2Û=vq2

ZK1:15, which shows that this equilibrium point is a saddle point, and is not
stable.

Careful study of the equilibrium equations shows that there are in fact two
other equilibria that are almost superimposed, N at qZ0.41p, ĈZ0:62, and P at
qZ0.40p, ĈZ0:60. N is a second energy minimum and P is a second saddle point
in the energy. Thus the shell is bistable, but the stability of N is clearly marginal.
The region around N and P is shown more clearly for the symmetric 408
composite shell, in the next example.

(d ) Symmetric 40 8 composite example

For the symmetric 408 composite shell described in table 2, the non-
dimensional D-matrix is given by

D̂Z

1 0:593 0:364

0:593 0:604 0:257

0:364 0:257 0:607

2
64

3
75: ð4:13Þ
Proc. R. Soc. A (2006)
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Figure 9. Polar plot of non-dimensional energy Û versus Ĉ and q for the symmetric composite shell
example. Contours are plotted atÛZ0:05; 0:1; 0:15;. . The four equilibrium points are labelled M,
N, P and Q.
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Figure 10 shows the non-dimensional energy, calculated from (4.2) for this case.
The basic structure of the plot is very similar to the 458 symmetric case; again
there are four equilibrium positions, labelled M, N, P and Q, but now N and P
are shown distinctly.

The equilibrium point M is the original configuration, a minimum at qZ0,
ĈZ1, and there is a saddle point Q, now at qZ0.74p, ĈZ0:50. The second
minimum, N, is at qZ0.44p, ĈZ0:52. Substituting into (4.7)–(4.9) gives
v2Û=vĈ

2
Z1:31, v2Û=vq2Z0:29, v2Û=vq vĈZK0:49, confirming that this is

indeed a minimum, and that the structure is bistable. The second saddle-point,
P, is at qZ0.38p, ĈZ0:46. Substituting into (4.7)–(4.9) gives v2Û=vĈ

2
Z1:67,

v2Û=vq2Z0:0032, v2Û=vqvĈZK0:38, confirming that this is a saddle-point.
5. Stability criterion for shells with no coupling between bending
and twisting

The results from §§4a,b can be generalized to give a stability criterion for any
shell, where there is no coupling between bending and twisting (D16ZD26Z0).
In this case, there will always be a solution of the equilibrium equations (4.4) at
qZp/2, ĈZD̂12, corresponding to a second equilibrium position in addition to
Proc. R. Soc. A (2006)
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Figure 10. Polar plot of non-dimensional energy Û versus Ĉ and q for the 408 symmetric composite
shell example. Contours are plotted at ÛZ0:05; 0:1; 0:15;. . The four equilibrium points are
labelled M, N, P and Q. The additional contourÛZ0:123 has been plotted as a dashed line to show
more clearly the nature of the equilibria at N and P.
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the initial point at
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Z

0

0

2

2
4
3
5:

At the second equilibrium position, v2Û=vĈ
2
Z1 and v2Û=vq vĈZ0. Thus, the

existence of a minimum, and hence stability, depends on the sign of v2Û=vq2. The
system will be stable for

v2Û

vq2
O0;

and so, substituting into (4.8) the terms that correspond to the second
equilibrium configuration, computed above, gives

ðD̂12Þ2 4D̂66C2D̂12K2
D̂22

D̂12

 !
O0: ð5:1Þ
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853Bistable cylindrical shells
Thus, the existence of a second stable equilibrium depends entirely on the sign
of the second bracketed term in (5.1). In other words, defining

SZ4D̂66C2D̂12K2
D̂22

D̂12

; ð5:2Þ

the structure is bistable for SO0.
It is interesting to study (5.2) to see the effects that individual components

of the D-matrix have on the existence of a second stable solution. Increasing
the twisting stiffness (D66), and increasing the coupling between bending in the
x- and y-directions (D12) will tend to make a shell bistable. Decreasing the
bending stiffness in either the x-direction (D11), or the y-direction (D22) will also
tend to make a shell bistable (because decreasing D11 will increase D̂66 and D̂12).
6. Relaxing the inextensional constraint

For shells that have a non-zero B matrix, i.e. where there is coupling between
stretching and bending deformations, the assumption that the in-plane strains
are zero is unnecessarily restrictive. In this case, even when the shell is thin,
in-plane strains will occur a natural consequence of bending deformation.

Without changing the fundamental assumption of the inextensional model, a
minor amendment of the D matrix allow uniform in-plane strains to be included
in the formulation.

Starting from (2.1) we write, in compact form

A B

BT D

" #
e

k

" #
Z

f

m

� �
: ð6:1Þ

If we assume fZ0, instead of eZ0 as in the earlier formulation, we find that
(3.3) is replaced by

ðDKBTAK1BÞk Zm; ð6:2Þ
and introducing the ‘reduced’ bending stiffness D�

D� ZDKBTAK1B; ð6:3Þ
the rest of the analysis is then unchanged. For practical shells, D� is not very
different from D, and indeed when BZ0 they are identical.
7. Discussion

The results in §4 are in qualitative agreement with observations from simple
models. Isotropic shells are not bistable; simple antisymmetric layups of
composites are bistable. Symmetric layups of composites tend to coil into a
helix rather than a compact coiled state.

The results in this paper are also in very good quantitative agreement with the
results of various more complex analytical and computational models presented
in Iqbal & Pellegrino (2000) and Galletly & Guest (2004a,b). In particular, the
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results are identical to the analytical results in Galletly & Guest (2004a,b) for the
cases when b, the angle that the shell subtends in the initial state, is large.

Previously, Hyer and co-workers (e.g. Hyer 1981; Dano & Hyer 1998) have
studied a closely related problem, the non-planar room-temperature shape of
non-symmetric composites that were initially laid-up flat. They assumed a simple
out-of-plane displacement field, but adopt a second-order strain formulation to
capture the out-of-plane instability of these plates. By contrast, the inextensional
model presented here works in terms of curvatures, which allow us to adopt a
linear kinematic model, giving a much simpler, although less general,
formulation.

All of the work in this paper has assumed that the shells are stress-free in their
initial configuration; however, isotropic shells can also be made bistable by an
initial state of self-stress. Kebadze et al. (2004) develops the inextensional model
presented in this paper to deal with these cases.
8. Conclusion

The equilibrium configurations of a cylindrical shell can be determined by solving
(4.4) and the stability of each configuration can then be tested by checking the
positive definiteness of (4.5). If bending and twisting are decoupled in the
D matrix, then the test for positive definiteness reduces to (5.2).

We would like to thank Buba Kebadze, Khuram Iqbal and Diana Galletly for helpful discussions,
and Shamala Sambasivam for making the model shown in figure 1. The work was partially funded
by the EPSRC. Simon Guest acknowledges support from the Leverhulme Trust, and Harvard
University Division of Engineering and Applied Sciences.
References

Calladine, C. R. 1983 Theory of shell structures. Cambridge, UK: Cambridge University Press.
Dano, M. L. & Hyer, M. W. 1998 Thermally-induced deformation behavior of unsymmetric

laminates. Int. J. Solids Struct. 35, 2101–2120. (doi:10.1016/S0020-7683(97)00167-4)
Galletly, D. A. & Guest, S. D. 2004a Bistable composite slit tubes I: a beam model. Int. J. Solids

Struct. 41, 4517–4533. (doi:10.1016/j.ijsolstr.2004.02.036)
Galletly, D. A. & Guest, S. D. 2004b Bistable composite slit tubes II: a shell model. Int. J. Solids

Struct. 41, 4503–4516. (doi:10.1016/j.ijsolstr.2004.02.037)
Hyer, M. W. 1981 Calculation of the room-temperature shapes of unsymmetric laminates.

J. Compos. Mater. 15, 296–310.
Iqbal, K. & Pellegrino, S. 2000 Bi-stable composite shells. Proc. 41st AIAA/ASME/ASCE/AHS/

ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 3–6 April 2000,
Atlanta, GA, USA.

Iqbal, K., Pellegrino, S. & Daton-Lovett, A. 2000 Bi-stable composite slit tubes. In Proc. IUTAM-
IASS Symposium on Deployable Structures, 6–9 September 1998 (ed. S. Pellegrino & S. D. Guest),
pp. 153–162. Cambridge, UK: Kluwer.

Jones, R. M. 1999 Mechanics of composite materials, 2nd edn. Philadelphia, PA: Taylor & Francis.
Kebadze, E., Guest, S. D. & Pellegrino, S. 2004 Bistable prestressed shell structures. Int. J. Solids

Struct. 41, 2801–2820. (doi:10.1016/j.ijsolstr.2004.01.028)
Mansfield, E. H. 1989 The bending and stretching of plates, 2nd edn. Cambridge, UK: Cambridge

University Press.
Riley, K. F., Hobson, M. P. & Bence, S. J. 1997 Mathematical methods for physics and engineering.

Cambridge, UK: Cambridge University Press.
Proc. R. Soc. A (2006)

http://dx.doi.org/doi:10.1016/S0020-7683(97)00167-4
http://dx.doi.org/doi:10.1016/j.ijsolstr.2004.02.036
http://dx.doi.org/doi:10.1016/j.ijsolstr.2004.02.037
http://dx.doi.org/doi:10.1016/j.ijsolstr.2004.01.028

	Analytical models for bistable cylindrical shells
	Introduction and background
	Bistable shells
	Extensional bending model
	Inextensional model
	Isotropic example
	Antisymmetric 45 composite example
	Symmetric 45 composite example
	Symmetric 40 composite example

	Stability criterion for shells with no coupling between bending and twisting
	Relaxing the inextensional constraint
	Discussion
	Conclusion
	We would like to thank Buba Kebadze, Khuram Iqbal and Diana Galletly for helpful discussions, and Shamala Sambasivam for making the model shown in figure 1. The work was partially funded by the EPSRC. Simon Guest acknowledges support from the Leverhulm...
	References


