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Abstract

A symmetry-extended mobility rule for mechanical linkages is presented,
in which the conventional mobility criterion for a linkage is subsumed and
strengthened by an equation that predicts symmetries, as well as numbers,
of mobilities and states of self stress.

Keywords: Symmetry; Mobility

1 Introduction

The mobility criterion, a simple generic counting relationship to calculate the
degrees of freedom of a mechanical linkage, is a familiar concept in mechanism
theory, attributed by Hunt [1] to Grübler [2,3] or Kutzbach [4]. One form,
on which we shall build in this paper, is given by e.g. Hunt [1]: the relative
degrees of freedom, or the mobility, m, of a mechanical linkage consisting of
n bodies connected by g joints, where joint i permits fi relative freedoms, is

m = 6(n − 1) − 6g +

g∑

i=1

fi (1)
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The meaning of this equation is clear: in the absence of connections between
bodies, and relative to one body considered as a reference, the other bod-
ies have 6 freedoms each; freedoms are then removed by the

∑g

i=1(6 − fi)
constraints at the joints.

It is the purpose of the present note to point out that a more specific form
of mobility rule can be found by considering (1) in the light of not only the
numbers of bodies, joints and freedoms, but also their symmetries. Given the
reducible representations of bodies, joints and freedoms, which we shall show
are easily calculated by counting the structural components left unshifted by
various symmetry operations, the algebraic formula (1) appears as an aspect
of a more general relation which can give useful symmetry information about
possible mobility. This extension of an algebraic to a group-theoretical re-
lation parallels developments in structural engineering and chemistry, where
Maxwell’s rule for the rigidity of a structure, and Euler’s polyhedral theorem
relating numbers of vertices, edges and faces, have both been shown to have
powerful symmetry counterparts [5,6]. Previous authors have used simple
symmetry relations to find or classify overconstrained linkages (e.g. [7–9]),
but have not placed their work in a general group theoretical context. Here
we give a formulation that applies to all linkages of all symmetries.

The paper will proceed as follows. First, a generalised form of (1) will be
developed, in order to consider possible states of self-stress in the mechanical
linkage, as well as mobility, in a similar fashion to Calladine’s generalisation
of Maxwell’s rule [10]. Then, a symmetry-extended form of this generalised
mobility rule will be developed. Application of this extended relation requires
an understanding of how joint freedoms transform under symmetry opera-
tions, and this will be developed for the one-degree-of-freedom lower pairs.
A simple example will be given that shows the advantage of a symmetry
treatment over simple counting.

2 A generalised mobility rule

There are many cases for which the generic mobility criterion given in (1)
is not actually applicable, e.g. for particular geometric configurations where
constraints at the joints are not independent. A form of (1) that does apply
in all cases is

m − s = 6(n − 1) − 6g +

g∑

i=1

fi (2)

where s is the number of independent states of self-stress that the mechanical
linkage can sustain: a state of self-stress is a set of internal forces in the link-
age in equilibrium with zero external load. s can be considered equivalently
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as the number of overconstraints — independent geometric incompatibilities,
or misfits — that are possible for the linkage. It is this generalised mobility
criterion, (2), for which we shall develop the symmetry-extended form.

Equation (2) can most easily be demonstrated by considering a compatibil-

ity matrix C and an equilibrium matrix A for a mechanical linkage [11]. The
compatibility matrix gives an instantaneous relationship Cd = e between rel-
ative infinitesimal motions of the rigid bodies (rotations and displacements),
written as a vector d, and independent ‘strains’ at joints, written as a vector
e. d will have 6(n − 1) components (considering one body as a reference),
while e will have

∑g

i=1(6 − fi) components, one for each constraint at each
joint. The nullspace of C corresponds to solutions of Cd = 0, and has
dimension

m = 6(n − 1) − r, (3)

where r is the rank of C [12]. If there are at least as many freedoms as
constraints, 6(n − 1) ≥

∑g

i=1(6 − fi), and the matrix is of full rank, then
r =

∑g

i=1(6 − fi), and (1) is correct — in fact, careful statements of (1)
state that it applies when constraints are independent, which implies these
conditions.

An argument based on virtual work shows that an equilibrium matrix
A = CT describes the relationship Ar = p between the internal forces at
the joints, written as a vector r, and forces and moments applied to the
bodies, written as a vector p, where r and p are work-conjugate to e and
d, respectively. The nullspace of A (the left-nullspace of C) corresponds to
solutions of Ar = 0, i.e. states of self-stress, and has dimension

s =

g∑

i=1

(6 − fi) − r, (4)

If there are at least as many rigid-body freedoms as joint constraints, 6(n −

1) ≥
∑g

i=1(6− fi), and the matrix is of full rank, then r =
∑g

i=1(6− fi), and
s = 0, which is implied in (1).

Eliminating r between (3) and (4) gives the generalised mobility rule, (2).
Typically, r can only be determined by full knowledge of the instantaneous
geometry of the mechanical linkage, although often further insight can be
obtained if the geometry can be recognised as having some special property,
for instance belonging to a specific category of screw system [1, Chapter 13].

The next section will develop a symmetry-extended mobility criterion
that compares not only the total number, but also the symmetries, of the
mobility and the states of self-stress.
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3 A symmetry-extended mobility rule

3.1 Representations

This section will develop a symmetry-extended mobility rule using the lan-
guage of representations. The representation of an object will be written as
Γ(object), and describes its symmetry in a relevant point group. A point
group consists of a set of symmetry operations S, and the objects we are
considering are (sets of) points, vectors representing translations and forces,
pseudo-vectors representing rotations and moments etc. The representation
Γ(object) collects the character χ(S) of such sets under S, i.e. the trace of
the matrix that relates the set before and after the application of S.

The development of (2) can be repeated in a symmetry-extended form
by examining the difference between the symmetries of the freedoms of the
rigid bodies that make up the mechanical linkage, and the symmetries of
the constraints. The development will broadly follow that outlined for the
symmetry-adapted Maxwell rule [5], and a reader unfamiliar with the lan-
guage of representations will find it presented there in a mechanics context.

In the language of representations, the extended mobility criterion can
be written as

Γ(m) − Γ(s) = Γ(relative body freedoms) − Γ(hinge constraints) (5)

where Γ(m) and Γ(s) are the representations of the mobility, and the states
of self-stress, respectively. The other terms are self-explanatory; they will
be expanded using the notion of a contact polyhedron C, with ‘vertices’ at
bodies, and ‘edges’ through joints. (Strictly speaking, C is not always a
polyhedron, as for many mechanical linkages it will not be possible to define
the faces of C, but we will nonetheless continue to use this terminology.)
All representations will be calculated in G(C), the point group of C, rather
than the point group of the linkage from which it was derived. Symmetries
of C must preserve the axes of the hinges, but within this restriction C

is constructed to be maximally symmetric. C may have higher symmetry
than the actual object — the actual shapes of bodies, or the actual physical
positions of hinges along hinge lines, have no effect on the symmetry of the
mobility.

3.2 Relative body freedoms

The relative body freedoms are the freedoms of all the bodies of the mechan-
ical linkage, in the absence of connections, and taken relative to one body
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considered as a reference. Their representation can be written as that of the
total freedoms of the bodies, minus that of the rigid body motions:

Γ(relative body freedoms) = Γ(body freedoms)−Γ(rigid body motion), (6)

where
Γ(rigid body motion) = ΓT + ΓR, (7)

and ΓT and ΓR are the representations of rigid-body translations and rota-
tions, and can be read off from point-group theory tables, e.g. [13]. In terms
of the contact polyhedron C, the three rotational and three translational
freedoms per body span

Γ(body freedoms) = Γ(v, C) × (ΓT + ΓR) (8)

where Γ(v, C) is the permutation representation of the vertices of C. A
permutation representation of a set has character χ(S) equal to the number
of elements of the set left in place by the operation S.

3.3 Hinge constraints

An expansion of the representation of the hinge constraints is less straight-
forward. As in the counting rule (1), we expand Γ(hinge constraints) as the
representation of constraints imposed by hypothetical rigid joints, minus that
of the actual freedoms at the joints:

Γ(hinge constraints) = Γ(rigid joints) − Γf , (9)

where Γf is the representation of joint freedoms. We will show later that the
constraint representations can be written as

Γ(rigid joints) = Γ‖(e, C) × (ΓT + ΓR) (10)

where Γ‖(e, C) is the representation of a set of vectors along the edges of
C. The proof of (10) follows immediately from the description of the six
freedoms between two rigid bodies, which is presented next; the proof itself
will be given in Section (3.6).

3.4 General form of the symmetry-extended mobility

rule

Substituting (6)–(10) into (5) gives the symmetry-extended mobility rule

Γ(m)−Γ(s) = Γ(v, C)×(ΓT +ΓR)−Γ‖(e, C)×(ΓT +ΓR)−(ΓT +ΓR)+Γf (11)

5



or, more succinctly,

Γ(m) − Γ(s) = (Γ(v, C) − Γ‖(e, C) − Γ0) × (ΓT + ΓR) + Γf (12)

where Γ0 is the totally symmetric representation, with χ(S) = 1 for all S. Use
of this rule requires the evaluation of Γf . As Γf may represent combinations
of many different types of joint, there is little to be gained by attempting to
write it in an explicit form. The calculation of Γf is straightforward in any
particular case, and the following section shows how to do this.

3.5 Joint freedoms

The representation Γf can be found by calculating the character of the rep-
resentation under each of the symmetry operations of the group G(C). The
present section will describe how these characters can be found.

A contribution to the character χf (S) occurs only when a joint is un-
shifted under the symmetry operation S. All joints are unshifted by the
identity, and hence the character under the identity, χf (E), is simply the
summation over all joints of the degrees of freedom at each joint. Under
other symmetry operations, the contribution of each unshifted joint depends
on the type of joint, and the relative orientation of the axis of the symmetry
operation, the axes (if any) of the joint, and the directrix of the ‘edge’ in
C. The calculation can be simplified, however, because the set of freedoms
at any joint can be split into revolute, prismatic, and screw freedoms, and
simple expressions for the characters of these individual freedoms are easily
found, as detailed in the following sections. Of course, revolute and prismatic
freedoms can be considered as special cases of screw freedoms, but in general
a screw is not preserved under a reflection, which changes a right-hand to a
left-hand screw, and so treating prismatic or revolute joints as screws may
obscure the symmetry.

3.5.1 Revolute, prismatic and screw freedoms

The character of the freedom associated with a one-degree-of-freedom lower
pair that is unshifted by a symmetry operation S depends upon the type of
joint. For the three possible joint types we shall show that the character is
given by:

χrevolute(S) = χRr
(S)χe‖(S), (13)

where χRr
(S) is the character of Rr, a rotation about the axis of the revolute

freedom, r, and χe‖(S) is the character of a vector lying along the edge e of
C;

χprismatic(S) = χTp
(S)χe‖(S), (14)
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(a)r, e||

(b)

(c)

Figure 1: Examples of the character of the freedom associated with a revolute
joint under symmetry operations. (a) A relative rotation between two bodies.
(b) The same relative rotation followed by a rotation of the whole system by
π about r: χRr

= 1; χe‖ = 1; and, by (13), χrevolute = 1×1 = 1. (c) The same
original relative rotation followed by a reflection in the plane perpendicular
to r: χRr

= 1; χe‖ = −1; and, by (13), χrevolute = −1 × 1 = −1.

where χTp
(S) is the character of a translation along the axis of the prismatic

freedom, p;
χscrew(S) = χTh

(S)χe‖(S) = χRh
(S)χe‖(S), (15)

where χRh
(S) is the character of Rh, a rotation about the axis of the screw

freedom, h, and χTh
(S) is the character of a translation along h. As only

proper operations are possible for a screw freedom, χRh
(S) = χTh

(S).
The character under S of the total set of revolute, prismatic and screw

freedoms of a linkage is then given by summing χrevolute, χprismatic and χscrew

over all joints of the respective types that are unshifted by S.
Some examples demonstrating the behaviour of a hinge under symmetry

operations are shown for a revolute hinge in Fig. 1, and for a prismatic hinge
in Fig. 2.

Equations (13)–(15) can be proved straightforwardly by considering the
limited set of symmetry operations S that may act on the joint without shift-
ing it. Considering the joined bodies as structureless points, the assembly of
two bodies, taken together with the hinge that connects them and with the
corresponding edge of C, has maximum site symmetry D∞h (when the edge
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(a)

(b)

(c)

p

e||

Figure 2: Examples of the character of the freedom associated with a pris-
matic joint under symmetry operations. (a) A relative displacement be-
tween two bodies. (b) The same relative displacement followed by a rota-
tion of the whole system by π about p: χp = 1; χe‖ = −1; and, by (14),
χprismatic = 1 × −1 = −1. (c) The same original relative displacement fol-
lowed by a reflection in the plane perpendicular to p: χp = −1; χe‖ = 1; and,
by (14), χprismatic = −1 × 1 = −1.
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e||

r, p, h

(a)

E C∞(φ) C ′
2 σv σh i S∞(φ)

χRr
= χRh

1 1 −1 −1 1 1 1
χTp

= χTh
1 1 −1 1 −1 −1 −1

χe‖ 1 1 −1 1 −1 −1 −1

χrevolute 1 1 1 −1 −1 −1 −1
χprismatic 1 1 1 1 1 1 1
χscrew 1 1 1 · · · ·

(b)

Figure 3: Local site symmetry D∞h. (a) The disposition of bodies, joint axis
r, p, h and edge e; the joint axis will be considered as a pseudo-vector r when
the hinge is a revolute joint, and a vector p when it is a prismatic joint; when
the hinge is a screw joint, there is no distinction. (b) The characters χrevolute,
χprismatic, χscrew, χRr

= χRh
, χTp

= χTh
and χe‖ for all symmetry operations.

Improper operations are not defined for the screw freedom.

and hinge are collinear) or D2h (when the edge and hinge are perpendicular).
These two site groups are the maximum achievable; the actual site symmetry
may be lower. The two limiting cases are shown in Figs. 3(a) and 4(a), and
the tables in Figs. 3(b) and 4(b) show the relevant characters for the possible
symmetry operations, which confirm the correctness of (13)–(15).

These formal results have a ready pictorial interpretation. In the D∞h (or
subgroup) configuration, the freedom of a revolute hinge spans the pseudo-
scalar symmetry Γε, as it is preserved by all proper operations, and reversed
by all improper operations; the same behaviour would be found for a cylin-
der lying along the hinge axis marked with counter-rotating circular arrows
at opposite ends. The freedom of a prismatic hinge in the same configura-
tion spans the totally symmetric Γ0, as in this case it behaves as a simple
edge stretch. In the chiral site group appropriate to a screw joint, D∞ (or
subgroup), the freedom of the screw joint spans Γε = Γ0.

Likewise, in the D2h (or subgroup) configuration, the freedom of a revo-
lute hinge spans the symmetry of a translation normal to the plane containing
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e||

r, p, h

(a)

E C2(p) C2(e‖) C2(p × e‖) i σ(p) σ(e‖) σ(p × e‖)
χRr

= χRh
1 1 −1 −1 1 1 −1 −1

χTp
= χTh

1 1 −1 −1 −1 −1 1 1
χe‖ 1 −1 1 −1 −1 1 −1 1

χrevolute 1 −1 −1 1 −1 1 1 −1
χprismatic 1 −1 −1 1 1 −1 −1 1
χprismatic 1 −1 −1 1 · · · ·

(b)

Figure 4: Local site symmetry D2h. (a) The disposition of bodies, joint axis
r, p, h and edge e; the joint axis will be considered as a pseudo-vector r when
the hinge is a revolute joint, and a vector p when it is a prismatic joint; when
the hinge is a screw joint, there is no distinction. (b) The characters χrevolute,
χprismatic, χscrew, χRr

= χRh
, χTp

= χTh
and χe‖ for all symmetry operations.

Improper operations are not defined for the screw freedom.
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the hinge axis and the edge of C. The freedom of a prismatic hinge spans
the symmetry of a rotation about this normal. In the chiral site group ap-
propriate to a screw joint, D2 (or subgroup), the symmetry of the freedom,
a translation along the normal, and a rotation about the normal, are all
identical.

An alternative to using (13)–(15) is to imagine C as decorated with ap-
propriate motif for each joint freedom: revolute freedoms would be replaced
by marked cylinders or simple vectors, prismatic freedoms would be replaced
by structureless points or circular arrows, and screws would be replaced by
structureless points or vectors. The characters of the freedoms would then
correspond to the characters of these motifs. This is analogous to working out
vibrational properties of molecules by attaching local triads of displacement
vectors to all atoms [14].

It is interesting to note that in both configurations, the character of a
revolute freedom is that of a rotation about the axis of the freedom, as long
as the bodies connected by the hinge are unshifted (since then χe‖(S) = 1).
Similarly the character of a prismatic freedom is that of a displacement along
the axis of the prismatic freedom, as long as the bodies connected by the hinge
are unshifted.

3.5.2 Higher dimensional freedoms

We will not deal explicitly here with joints that have more that one degree
of freedom (e.g. cylindrical, or spherical joints), as the associated freedoms
in these cases can be considered as the sum of one-dimensional freedoms of
the types that we have already considered, with appropriate identification of
axes.

3.6 Rigid joints

Equation (10) gave an expression for the representation of the constraints
imposed for hypothetical rigid joints, but without proof. That proof is given
here.

Connection of two bodies through a rigid joint suppresses six relative
freedoms, and hence the character χrigid(S) under some symmetry operation
S will be given by the sum of characters for the six relative freedoms. But
these freedoms can be considered as three relative rotations and three relative
translations, and explicit formulae for their characters have been given in (13)
and (14). Summing over the freedoms,

χrigid(S) = (χT (S) + χR(S))χe‖(S), (16)

11



where χT (S) is the character of the set of three mutually perpendicular trans-
lations, χR(S) is the character of the set of rotations about three mutually
perpendicular axes, and as before, χe‖(S) is the character of the inter-body
vector e, all under the operation S.

Summing over the joints, or equivalently over the set of inter-body vectors
that make up the edges of C, the representation Γ(rigid joints) is seen to be

Γ(rigid joints) = Γ‖(e, C) × (ΓT + ΓR) (17)

i.e. (10).

4 Example

The use of the symmetry-extended mobility rule will be demonstrated by
analysing an overconstrained spatial four-bar mechanism. This is a straight-
forward pedagogical example: it demonstrates the existence and symmetry
of a full-cycle mechanism, as well as the symmetries of states of self stress.

The example linkage that will be analysed here is shown in Fig. 5. In the
initial fully-open state it consists of four bars of square cross-section lying
in a horizontal plane, connected by revolute joints alternately on the inside
and outside top faces. The linkage is in fact a highly symmetric form of a
Bennett linkage [1, Chapter 10], and hence must have one degree of freedom.
This linkage is particularly interesting, as it folds into a compact bundle of
bars, and this gives it potential as the basis for useful deployable structures
[15].

Evaluating the scalar extended mobility rule (2) for this structure is un-
informative, as the result, m − s = −2, is compatible with m = 0, s = 2.
As we shall see, the symmetry rule is more successful in that it predicts the
existence of the one mechanism.

A view of the frame, and its contact polyhedron C, in the fully-open
state, is shown in Fig. 6. Although the physical embodiment of the frame
has symmetry C2v, the contact polyhedron C, when decorated with the four
hinge axes, has the higher symmetry G(C) = D2d, and it is in this group
that we shall initially work. The character table for D2d is shown in Table 1.

The evaluation of the mobility using the new rule, (12), for the example
linkage is shown below. The calculation is similar to examples given elsewhere
for the symmetry-extended Maxwell rule [5].

The terms of the right-hand side of (12) are evaluated in turn. The
permutation representation of the vertices of C has character four under the
identity, as there are four vertices, and character two under S = C ′

2, as
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(a) (b) (c)

Figure 5: A spatial four-bar linkage, shown folding from its fully open state
(a), to its fully closed state (c), where it forms a compact bundle of bars.

π/4π/4 Cross-section 

in plane A

(a)

x
y

z

plane A
a

1

2
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4

b

d

c
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ec

ed

rb

rc
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2

3

4

(b)

C2(z), S4

C2'

C2'

σd

σd

Figure 6: A spatial four-bar linkage. (a) The physical embodiment, showing
four bars, 1–4, connected by four revolute joints, a–d. (b) A representation
of the contact polyhedron, C, with the four bars shown as rigid bodies,
connected by edges across the hinges. The axes of the revolute hinges a–d
are shown as pseudo-vectors ra–rd. Symmetry operations in G(C) are shown.
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D2d E 2S4 C2(z) 2C ′
2 2σd rotations, displacements

A1 1 1 1 1 1
A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1
B2 1 −1 1 −1 1 z

E 2 0 −2 0 0 (x,y) (Rx, Ry)

Table 1: The D2d character table.

two vertices lie on each transverse two-fold axis; all other operations shift
all vertices. The representation of edge vectors similarly has character four
under S = E, and character minus two under the dihedral reflections S = σd

which preserves two edge mid-points but reverses the edge vectors. The
totally symmetric representation Γ0 has χ(S) = for all S. The compound
representation ΓT + ΓR may be read from the character table in Table 1. As
a sum of translational and rotational terms it has zero character under every
improper operation.

The evaluation of Γf is the novel feature here. The revolute hinges are left
unshifted only by the symmetry operations E and σd, and hence the character
χf under any other symmetry operation is zero. For S = E all four hinges
are unshifted, and χf (E) = 4. For S = σd, for each hinge χRr

(σd) = −1,
χe‖(σd) = −1, and hence χrevolute(σd) = −1 × −1 = 1. Summing this over
the two hinges that are unshifted gives χf (σd) = 2. In tabular form, the full
calculation is

D2d E 2S4 C2(z) 2C ′
2 2σd

Γ(v, C) 4 0 0 2 0
−Γ‖(e, C) −4 0 0 0 2

−Γ0 −1 −1 −1 −1 −1

= −1 −1 −1 1 1
×(ΓT + ΓR) 6 0 −2 −2 0

= −6 0 2 −2 0
+Γf 4 0 0 0 2

= Γ(m) − Γ(s) −2 0 2 −2 2

Evaluating Γ(m) − Γ(s) in terms of irreducible representations gives

Γ(m) − Γ(s) = −B1 + B2 − E, (18)

and hence
Γ(m) ⊃ B2 (19)

14



and
Γ(s) ⊃ B1 + E. (20)

The structure has at least one mechanism, with fully defined symmetry. The
rule has found the mechanism that we could not detect from simple counting.

Just as the algebraic rule gives only the excess m − s, and cannot fix m

and s separately, symmetry arguments give only the symmetry excess Γ(m)−
Γ(s). It is always conceivable that there may exist cancelling equisymmetric
mechanisms and states of self-stress. In fact, in the present example, there
are no more mechanisms to be found; this can be checked by more detailed
numerical calculations or experiments.

In favourable cases, symmetry not only reveals the existence of a mecha-
nism, but can show that it must have full-cycle mobility [16]: if in some sym-
metry group, a mechanism is fully symmetric, and there is no equisymmetric
state of self-stress, that mechanism must have full-cycle mobility (must be
finite).

The calculation tabulated above shows that there is a single instantaneous
mobility with less than full symmetry in G(C). It is clear that mobilising
the linkage will remove some, but not all, of its symmetries. Displacement
of the linkage along its B2 path reduces the symmetry of C from D2d to C2v.
Re-evaluating Γ(m) − Γ(s) in the lower symmetry group, C2v, either from
scratch, or by deleting columns of the calculation table, gives

Γ(m) − Γ(s) = A1 − A2 − B1 − B2, (21)

and because we know, from numerical calculation or otherwise, that only one
mechanism exists, we can assert that Γ(m) = A1, and Γ(s) = A2 + B1 + B2,
and hence that the mechanism has full-cycle mobility. A general set of tables
for the symmetry-aided detection of finite mechanisms is given in [17].

5 Conclusion

The conventional mobility criterion for a linkage has been subsumed into
an extended form that considers the symmetries, as well as the numbers, of
mobilities and states of self stress. It has been stated in a compact general
form, with explicit formulae in terms of one-degree-of-freedom lower pairs.
A pedagogical example demonstrates the use of the rule in detecting and
classifying mobility, and further its role in determining whether the mobility
is full-cycle.

The full-cycle mobility of the example four-bar linkage, shown here using
the symmetry-extended mobility rule, will come as no surprise to those fa-
miliar with overconstrained mechanisms. However, the strength of the new
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rule is that it can be applied to much more complex systems; a good example
is the expandohedron, which models a possible mechanism for the expansion
of an icosahedral virus, and is analysed by the new rule in [18]. Symmetry
proves to be essential to the understanding of the deployment mode of these
expanding polyhedra.

Whenever a linkage has configurations of non-trivial symmetry, the sym-
metry-extended mobility rule can give more specific information on mobility
and states of self stress than the traditional scalar mobility criterion. The
new rule is easy to apply, requiring only consultation of a character table
and counting of structural components shifted and unshifted by symmetry
operations.
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