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Summary 
In this study, we introduce a star-shaped tensegrity structure with 4-fold dihedral symmetry, which 
is not super stable and can have multiple stable configurations. The transformation is studied 
between the symmetric initial stable state, and a second unsymmetric state where stability is 
conferred by contact of struts. 
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1. Introduction 
In our previous study [1], we have presented stability conditions for the star-shaped tensegrity 
structures, which have dihedral symmetry. Figure 1 shows the simplest example of this kind of 
structure, having three-fold dihedral symmetry. The thick and thin lines in the figure respectively 
denote struts in compression and cables in tension.  By contrast, the structure studied in this paper, 
on the left side of Figure 2, has four-fold dihedral symmetry. 
There are two types of nodes in a star-shaped tensegrity structure: boundary nodes and centre nodes 
in two parallel planes; and there are three types of members: struts and vertical cables that connect 
the boundary nodes lying in different horizontal planes, and radial cables that connect the boundary 
and centre nodes lying in the same horizontal plane.  
Super stability [2, 3], where the structure has a unique stable configuration with positive semi-
definite geometrical stiffness is usually preferable in the design of tensegrity structures, because 
they will recover their original configurations after release of any enforced deformations. By using 
high symmetry of the star-shaped structures, we have proved that their super stability is directly 
related to the connectivity pattern of the vertical cables: the star-shaped tensegrity structures with 

Fig. 1. The simplest 3D start-
shaped structure. Fig. 2. The two stable configurations. 



dihedral symmetry are super stable if and only if they have odd number of struts, while the struts 
are as close to each other as possible [1]. 

Fig. 3. Star-shaped structure with four struts. 

In contrast to super stability, the configurations of some structures that are not super stable might be 
switched to new stable configurations, instead of returning back to their original state, after release 
of enforced deformations. Such structures are called multi-stable structures, because they have more 
than one stable configuration. This study introduces a multi-stable tensegrity structure – the star-
shaped tensegrity structure with 4-fold dihedral symmetry as shown in Figure 2. The configuration 
on the left side is the original stable one with dihedral symmetry, and that on the right side is 
another ‘stable’ configuration with less symmetry. 

2. Configuration and Stability 
The structure of interest in the present study, as shown in Figure 3, consists of eight boundary nodes 
and two centre nodes; there are four struts, eight radial cables and four vertical cables. The original 
self-equilibrated and stable configuration of the structure is of 4-fold dihedral symmetry. The height 
of the structure is denoted by H, and the boundary nodes lie at the same radius R from the central 
axis. 

At each of the boundary nodes, a strut is 
in equilibrium with two cables connecting 
to the same node, all of which must 
therefore lie in a plane. Thus the out-
plane displacement of the node must 
infinitesimal mechanism, and accordingly, 
at least eight infinitesimal mechanisms 
exist in the structure. In fact, there is 
another infinitesimal mechanism, as the 
configuration has been chosen so that the 
equilibrium matrix [4] is singular, and 
rank-deficient by one. The corresponding 
self-equilibrium force mode of the 
structure is the fully-symmetric mode in 
which all cables are in tension, and all 
struts are in compression.  

Fig. 4. Minimum (non-dimensionalised) eigenvalue of 
the tangent stiffness matrix against ratio of 
height to radius. 
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In the unstressed state, the existence of 
infinitesimal mechanisms implies that the 
structure cannot be stable in the sense of 
having positive definite tangent stiffness 
matrix.  

Furthermore, for the structure in the stressed state, we know from our previous study that it is not 
super stable, because it has even number of struts; however, it turns out the structure is still locally 
stable with positive definite tangent stiffness, if the level of prestress introduced into the members is 
not too high so that the negative eigenvalues in the geometrical stiffness matrix do not dominate  



Fig. 5. Analysis model. Statically determinate constraints are applied: node 
9 is fully fixed, node 8 is fixed to lie on the z-axis, and node 5 is constrained 

not to move perpendicular to the 9-5 cable (defining the negative y-axis). 

 
 
 
 
 
 
 
 
 
 
 
 
over the positive definiteness of the tangent stiffness matrix, and more importantly, the ratio of 
height H to radius R of the structure is large enough.  
To clarify the last point, we assume that the members of the structure are rigid with infinite axial 
stiffness, and vary the ratio of height to radius from zero to ten. The minimum eigenvalue of the 
(simplified) tangent stiffness matrix against the H/R ratio is plotted in Figure 4. Note that the 
eigenvalues have been non-dimensionalised by force density, defined as the ratio of axial force to 
member length, of the vertical cables. 
The structure is stable if and only if the minimum eigenvalue is positive. Thus, it can be observed 
from Figure 4 that the structure is stable only when the H/R ratio is larger than 0.5. 
Besides the original stable configuration with dihedral symmetry, this structure has another stable 
configuration with lower symmetry. These two stable configurations are shown in Figure 2, which 
are physical models made to confirm its distinguished mechanical behaviours. Both of the 
configurations are stable in the sense that they will recover the original shape after release of small 
enforced deformations.  Moreover, the two stable states can be switched to each other by applying a 
large enforced deformation – the movement of any node around the principal axis of the high-
symmetry configuration. 
In the next section, we numerically trace the path, in terms of rotation angle against strain energy, 
between the two stable configurations.  

3. Multi-stable Path 
Figure 2 shows a physical model confirming multi-stable behaviour of the structure, and in this 
section, we confirm it by numerical investigations.  
Rotation is enforced to node 3 about z-axis, and after it is moved counter-clockwise through 45o , it 
finally arrives at the other stable configuration where there is contact between struts. Displacement 
control is implemented in the structural analysis, so as to capture the detailed behaviour of the 
structure during the enforced rotation. 
To investigate stability as well as equilibrium of the structure at each displacement (rotation angle) 
incrementally in the structural analysis, the strain energy stored in the structure is recorded, which is 
computed by 
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where si, li, Ai, Ei, σi (=si / Ai) and εi are axial force, length, cross-sectional area, Young’s modulus, 
stress and strain of member i, respectively. For simplicity, we assume that cross-sectional areas of 



the members are constant, having the values in the initially unstressed state. This should not do 
much harm to precision of the numerical analysis, because strains in the members are small, though 
deformations of the structure are large. 
The height and radius of the structure are set to H = R = 1.0m, and the axial stiffness AiEi of the 
struts and cables are set to 1.0×106 N and 1.0×102 N, respectively. The force densities of the struts, 
vertical cables and radial cables in the state of self-equilibrium are −1.0 N/m, 1.0 N/m, and 1.414 
N/m, respectively. 
The stain energy corresponding to each step of rotated angle is plotted in Figure 6, where the region 
at the peak of strain energy is amplified for clarity. We can observe from the figure that 
 1. At the initial position, where the rotated angle is θ = 0o:  
    The strain energy is the local minima in the neighbourhood, and therefore, it is in the state of self-

equilibrium as well as stability. 
2. Between the rotated angle θ = 0o and that corresponding to the maximum strain energy: 

The strain energy increases associated with the enforced rotation. The structure is equilibrated by 
the external loads, and is not in the state of self-equilibrium since the gradient of the energy 
against rotated angle is not equal to zero. Moreover, the structure would return back to the initial 
configuration θ = 0o if the external loads are removed. 

 3. At the rotated angle corresponding to the maximum strain energy: 
The structure is in the state of self-equilibrium since the gradient of strain energy is zero, but it is 
not stable because the energy is at the peak. It will move back to the initial stable configuration, 
or move forward to the next ‘stable’ configuration, depending on the infinitesimal disturbance of 
external loads. 

 4. Beyond the rotated angle corresponding to the maximum strain energy: 
     The structure is neither stable nor self-equilibrated, and will move forward to the ‘stable’ 

configuration with less symmetry as shown on the right side in Figure 2. 
 5. At the final position, where the rotated angle is θ = 45o or the constraint line in the figure: 
    Although the structure is neither stable nor self-equilibrated from the viewpoint of energy, it is in 

Fig. 6. Strain energy stored in the structure for different rotations of the displaced node 
around the central axis. 
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fact equilibrated and stabilized by contact between the compressive members (struts). Therefore, 
further decrease of the strain energy is prevented.  

4. Conclusions 
In this study, we have presented a tensegrity structure that can have multiple stable configurations. 
The multi-stable behaviour of the structure has been confirmed by numerical analyses as well as 
physical model.  
The original stable configuration is of high level of symmetry, in this case 4-fold dihedral symmetry, 
and the other ‘stable’ configuration is of less symmetry. Both of these two configurations are stable 
in the sense that they will recover the original shape after release of small enforced deformations. 
The original configuration is in the self-equilibrium state with zero gradient of the energy, and 
furthermore, it is stable with locally minimum energy. By contrast, the alternative ‘stable’ 
configuration is in fact equilibrated and stabilized by contact between the struts.   
The model can be moved between the two stable states by applying a large enforced deformation – 
the movement of any node around the principal axis of the high-symmetry configuration.  
. 
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