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Abstract

This paper presents a simple and efficient method to determine the self-equilibrated configura-
tions of prismatic tensegrity structures, nodes and members of which have dihedral symmetry.
It is demonstrated that stability of this class of structures is not only directly related to the
connectivity of members, but is also sensitive to their geometry (height/radius ratio), and is also
dependent on the level of self-stress and stiffness of members. A catalogue of the structures with
relatively small number of members is presented based on the stability investigations.
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1. Introduction
In this paper, we describe a study into the configuration and stability of prismatic

tensegrity structures with dihedral symmetry. The simplest example of this class of struc-
tures is shown in Fig. 1. This class of structures was studied by Connelly and Terrell
(1995): they showed that the example shown in Fig. 1, and other prismatic tensegrity
structures where the horizontal cables are connected to adjacent nodes, are super stable.
Super stable structures are guaranteed to be stable, for any level of self-stress and material
properties, as long as every member has a positive rest-length (by contrast, see Schenk et
al. (2007) for an example of a prismatic tensegrity structure where some of the members
have zero rest length). Connelly and Terrell (1995), however, did not address the stability
of other prismatic tensegrity structures that are not super stable. These structures may
still be stable under certain conditions; investigation of these conditions and classification
of the stability of prismatic tensegrity structures are the subjects of this paper.

We will use three different meanings of stability in this paper. We describe a structure
as stable when it has a positive definite tangent stiffness matrix: in general, the tangent
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Fig. 1. The simplest prismatic tensegrity structure in three-dimensional space. The thin and
thick lines denote, respectively, cables that carry tension, and struts that carry compression.
The nodes lie in two horizontal planes. This structure has D3 symmetry, and using the notation
described at the end of Section 2.1, is denoted D1,1

3 .

stiffness matrix depends upon both the material properties of the members, and the
level of self-stress (Guest, 2006) (note that we are not considering any concept of higher-
order stability, as discussed in Connelly and Servatius (1994)). We describe a structure as
prestress stable when an idealized version of the structure, with members whose length
cannot change, is stable. Prestress stability depends upon the geometric configuration of
the structure; a ‘stretched’ version of a prestress stable structure may not be prestress
stable. (By ‘stretched’ we do not mean the tensegrity itself has been deformed, rather
we mean a new tensegrity where the coordinates of the nodes are given by an affine
transformation of the coordinates of the original nodes). Finally we use the term super
stable in the same sense as that used by Connelly and Terrell (1995): it implies that any
stretched configuration of the structure is stable.

After showing that some prismatic tensegrity structures are super stable, Connelly and
Terrell (1995) listed the following three questions, where the terms ‘rigid’ and ‘tensigrid’
denote prestress stable and tensegrity structure, respectively:

(1) Can other methods be applied to show that some of the other prismatic tensigrids
are rigid?

(2) Can it be shown that some of the other prismatic tensigrids are not rigid?
(3) How “often” it is rigid?

In this study, we show that stability of prismatic tensegrity structures is dependent on
the connectivity of the members (horizontal cables and vertical cables), the height/radius
ratio, and the self-stress to member stiffness ratio. It is shown that structures that are
not super stable can still be stable in some cases. For example, the structure shown in
Fig. 2(a) is not super stable, but it can be prestress stable if it has the right height/radius
ratio.

Following this introduction, the study is organized as follows. Section 2 presents a simple
method for the determination of self-equilibrated configurations of prismatic tensegrity
structures making use of their symmetry. Conditions for the divisible structures, which
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(a) prestress stable (D2,3
8 ) (b) unstable (D2,1

8 ) (c) divisible (D2,2
8 )

Fig. 2. Prismatic tensegrity structures with D8 symmetry. The structure D2,3
8 is prestress stable

when its height/radius ratio is within the range of [0.4,3.1]; the structure D2,1
8 can never be

stable, and the structure D2,2
8 can be physically divided into two identical substructures D1,1

4 .
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Fig. 3. The prismatic tensegrity structure D1,1
3 .

can be physically divided into several identical substructures, are given in Section 3.
Section 4 defines stability criteria, and discusses the critical parameters for the stability
of prismatic tensegrity structures. Section 5 gives a catalogue of the stability of prismatic
tensegrity structures with up to ten struts, and Section 6 concludes the paper.

2. Symmetry and Configuration
We define the class of prismatic tensegrity structures as follows. The structures have 2n

nodes, arranged in two horizontal circles of radius R around the vertical z-axis, which is
an n-fold symmetry-axis. Within each circle, each node is connected by ‘horizontal’ cables
to two other nodes. The two planes containing the nodes are at z = ±H/2. Each node is
connected by a strut and a ‘vertical’ cable to nodes in the other plane. The structure has
Dn symmetry, using the Schoenflies notation, and this symmetry allows us to calculate
self-equilibrated configurations by considering the equilibrium equations of only one node.

2.1 Orbits
Consider a specific set of elements (nodes or members) of a structure with symmetry

G. If one element in a set can be transformed to any other member of that set by a proper
symmetry operation in G, then this set of elements are said to belong to the same orbit.
A structure can have several different orbits of elements of the same type.
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Table 1
Transformation of nodes and members of the structure D1,1

3 in Fig. 3 corresponding to the
symmetry operations of D3. The elements listed in the left-hand column are transformed to the
elements shown in the table by the symmetry operations given in the top row.

E(C0
3 ) C1

3 C2
3 C21 C22 C23

node N0 N0 N1 N2 N3 N4 N5 nodes
member 1 1 2 3 6 4 5 horizontal cables
member 7 7 8 9 9 7 8 vertical cables
member 10 10 11 12 10 11 12 struts

We are considering structures that have dihedral symmetry, denoted Dn: there is a
single major n-fold rotation (Ci

n) axis, which we assume is the vertical, z-axis, and n
2-fold rotation (C2j) axes perpendicular to this axis (Kettle, 1995). In total there are 2n
symmetry operations.

For a prismatic tensegrity structure, there is one orbit of nodes, and each symmetry
operation transforms a reference node into one of the other nodes; there is a one-to-one
correspondence between the nodes and the symmetry operations. (When there is a one-
to-one correspondence between elements and symmetry operations, the orbit is called a
regular orbit). There are in total 2n nodes, arranged in two horizontal planes, with n
nodes in each. We number the nodes from 0 to n− 1 in the top plane, and n to 2n− 1 in
the bottom plane. An example structure with D3 symmetry is shown in Fig. 3: nodes N0,
N1, N2, and nodes N3, N4, N5 lie in the top and bottom horizontal planes, respectively.
Any node, e.g., node N0, can be transformed to any other node, including itself, by one
of the symmetry operations of D3 as listed in Table 1.

There are three orbits of members: horizontal cables, vertical cables, and struts. Each
node is connected by two horizontal cables lying in a horizontal plane, one vertical cable,
and one strut: the vertical cable and strut connect nodes in different planes. The members
in each orbit have the same length; we assume a symmetric internal self-stress state, and
hence the internal force, and the force density (internal force to length ratio) are also the
same in each member of an orbit. There are 2n horizontal cables, and each symmetry
operation transforms a reference cable into one of the other cables; there is a one-to-one
correspondence between the horizontal cables and the symmetry operations (the horizontal
cables form a regular orbit). There are, however, only n vertical cables, and n struts; there
is a one-to-two correspondence between the vertical cables (or struts) and the symmetry
operations. Each vertical cable and strut intersects one of the 2-fold horizontal rotation
axes, and this 2-fold operation transforms the vertical cable (or strut) into itself. For
example, transformations of the members of the structure with D3 symmetry by the
symmetry operations are listed in Table 1. For some structures, the horizontal cables may
cross one another; we neglect to consider any interference, essentially assuming that these
cables can pass through one another.

We use the notation Dh,v
n to describe the connectivity of a prismatic tensegrity with Dn

symmetry: h and v respectively describe the connectivity of the horizontal and vertical
cables, while that of struts is fixed. We describe the connectivity of a reference node N0

as follows — all other connections are then defined by the symmetry.
(1) Without loss of generality, we assume that a strut connects node N0 in the top plane

to node Nn in the bottom plane.
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(2) A horizontal cable connects node N0 to node Nh: symmetry also implies that a
horizontal cable must also connect node N0 to node Nn−h. We restrict 1 ≤ h ≤ n/2.

(3) A vertical cable connects node N0 in the top plane to node Nn+v in the bottom plane.
We restrict 1 ≤ v ≤ n/2 (choosing n/2 ≤ v ≤ n would give essentially the same set
of structures, but in left-handed versions).

2.2 Transformation Matrices
Let x0 and xi (∈ <3) denote the coordinates of nodes N0 and Ni in three-dimensional

space, respectively. Suppose that node N0 can be transformed to node Ni by a symmetry
operation in the group Dn. Then we have the following equation with the transformation
matrix Ri ∈ <3×3

xi = Rix0, for i = 1, 2, . . . , 2n. (1)

Because the nodes form a regular orbit, there will be one matrix Ri for each symmetry
operation in the group. These matrices are said to form a representation Γxyz of the group
Dn. To make use of this representation, we will use some Group Representation Theory ;
an introduction to this material can be found, for example, in Bishop (1973).

The matrices Ri form a reducible representation of Dn. However, it is straightforward
to write this reducible representation in terms of irreducible representations. The irre-
ducible representations that make up Γxyz can be read off from a set of character tables,
e.g., Altmann and Herzig (1994). For any Dn, Γxyz is the direct sum of the irreducible
representations A2 and E1 (the standard notation is E for D3 and D4, but we will use
E1 for these cases too). The irreducible representation A2 is one-dimensional, and cor-
responds to the transformation of the z-coordinate. The irreducible representation E1 is
two-dimensional, and corresponds to the transformation of the x- and y-coordinates. Thus
the transformation matrices Ri ∈ <3×3 can be written as

Ri =

[
RE1

i

RA2
i

]
, (2)

where the matrices RE1
i ∈ <2×2 form the representation E1, and the matrices RA2

i ∈ <1×1

form the representation A2.
The one-dimensional matrices RA2

i are unique, but there is some limited choices for the
two-dimensional matrices RE1

i . By choosing a positive rotation around the z-axis for R1,
the transformation matrix Ri for the cyclic rotation Ci

n through 2iπ/n can be written as

Ri =




Ci −Si 0
Si Ci 0
0 0 1


 for 0 ≤ i ≤ n− 1, (3)

where Ci = cos(2iπ/n) and Si = sin(2iπ/n), and i is running from 0 to n − 1. By
choosing that a dihedral rotation about the x-axis transforms node N0 to node Nn, the
transformation matrices Ri for the 2-fold rotations can be written as

Ri =




Ci Si 0
Si −Ci 0
0 0 −1


 for n ≤ i ≤ 2n− 1. (4)
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Fig. 4. All nodes connected to a reference node N0 of the structure D2,1
8 .

2.3 Symmetric state of self-stress
There is only one orbit of nodes, and hence to find a totally symmetric state of self-

stress, we only need to consider equilibrium of one node under zero external loading:
equilibrium of any other node is identical, by symmetry (Connelly and Back, 1998).

Consider a single reference node N0, and the members that are connected to it — an
example is shown in Fig. 4. The coordinates xh and xn−h of the nodes Nh and Nn−h

connected to the reference node as horizontal cables can be computed as follows by using
Eq. (1)

xh = Rhx0,
xn−h = Rn−hx0,

(5)

and the direction vectors dh and dn−h of the horizontal cables can be written as

dh = xh − x0 = (Rh − I
3×3

)x0,

dn−h = xn−h − x0 = (Rn−h − I
3×3

)x0,
(6)

where I
3×3

denotes the 3-by-3 identity matrix. Similarly, the coordinates xs and xv of the

nodes Nn and Nn+v in the bottom plane that are connected to N0 by a strut and a vertical
cable, respectively, can be calculated by

xs = Rnx0,
xv = Rn+vx0,

(7)

and their direction vectors ds and dv are

ds = xs − x0 = (Rn − I
3×3

)x0,

dv = xv − x0 = (Rn+v − I
3×3

)x0.
(8)

Let qh, qs and qv denote the force densities of the horizontal cables, strut and vertical
cable, respectively, where the force density is the ratio of the axial force fi to the length
li; i.e., qi = fi/li. Because tensegrity structures are pin-jointed and carry only axial forces
in the members, the direction of the axial force is identical to that of the member. Thus,
the axial force vectors fh and fn−h of the horizontal cables can be written as

fh = fhdh/lh = qhdh = qh(Rh − I
3×3

)x0,

fn−h = fhdn−h/lh = qhdn−h = qh(Rn−h − I
3×3

)x0.
(9)
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Fig. 5. Self-equilibrium of the reference node of prismatic tensegrity structures. The three ca-
ble forces, fh, fn−h and fv are all tensile, and have a positive magnitude; the strut force fs is
compressive, and has a negative magnitude.

Similarly, the axial force vectors fs and fv of the strut and vertical cable are

fs = qs(Rn+s − I
3×3

)x0,

fv = qv(Rn+v − I
3×3

)x0.
(10)

When no external load is applied, the node N0 should be in equilibrium, i.e.,

fh + fn−h + fs + fv = 0. (11)

Substituting Eqs. (9) and (10) into Eq. (11), it gives

S̃xyzx0 = 0, (12)

where

S̃xyz = 2qh




Ch − 1 0 0
0 Ch − 1 0
0 0 0




+qs




0 0 0
0 −2 0
0 0 −2


 + qv




Cv − 1 Sv 0
Sv −Cv − 1 0
0 0 −2


 . (13)

S̃xyz is a block-diagonal matrix constructed from a 2-by-2 and a 1-by-1 sub-matrices on
its leading diagonal. Both of these sub-matrices should be singular to allow the solution of
Eq. (12) to give the position vector x0 of the reference node with non-trivial coordinates
in three-dimensional space. For the singularity of the 1-by-1 sub-matrix, we have

0− 2qs − 2qv = 0, (14)

i.e.,

qv = −qs. (15)
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For the 2-by-2 sub-matrix, we can enforce singularity by ensuring that the determinant is
equal to zero, i.e.,

[2qh(Ch − 1) + 0 + qv(Cv − 1)][2qh(Ch − 1)− 2qs − qv(Cv + 1)]− q2
vS

2
v = 0. (16)

Using qv = −qs from Eq. (15), and the trigonometric relationship C2
v + S2

v = 1, Eq. (16)
reduces to

4

(
qh

qv

)2

(Ch − 1)2 + 2Cv − 2 = 0. (17)

Since both of qh and qv should have positive sign (they are both cables in tension), only
the positive solution is adopted, i.e.,

qh

qv

= +

√
2− 2Cv

2(1− Ch)
. (18)

When both Eqs. (15) and (18) hold, S̃ has a nullity of 2, and hence has a two-dimensional
null-space. Any vector in that null-space can be the coordinate vector x0 of the reference
node. In general, the coordinate vector can be written in terms of two parameters, R and
H, as

x0 =
R

R0




Cv − 1 +
√

2− 2Cv

Sv

0


 +

H

2




0
0
1


 , (19)

where R0 is the norm of the first vector representing the coordinates in xy-plane, and
then R and H denote the radius and height of the structure, which can have arbitrary real
values. Connectivity of horizontal cables does not affect the self-equilibrated configuration
of prismatic tensegrity structures, but, as we will see in Section 4, it affects the stability
of the structures.

By the application of Eqs. (1), (3) and (4), the coordinates of all the other nodes Ni

can be determined by running i from 1 to 2n− 1.

3. Divisibility Conditions
Depending on the connectivity of members, a prismatic tensegrity structure may be

completely separated into several identical substructures that have no mechanical rela-
tion with each other. The substructures are of lower symmetry compared to the original
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structure. For example, the structure D2,2
6 in Fig. 6(a) can be divided into two identical

substructures D1,1
3 . We will exclude divisible structures from our stability investigation,

because there is nothing to prevent the substructures moving relative to one another; the
stability of the substructures themselves will be considered anyway for the lower symmetry
case.

This section presents the necessary and sufficient divisibility conditions for prismatic
tensegrity structures. It is demonstrated that divisibility of these structures depends on
the connectivity of the horizontal as well as vertical cables. The divisibility conditions
for prismatic tensegrity structures have also been studied by Coxeter (1973) and Hinrichs
(1984). The indivisible structure in this study is referred to as a ‘single connected network’,
and the divisible structure is referred to as a ‘compound star polygon’, in Coxeter (1973).

3.1 Divisibility of Horizontal Cables

Suppose that we randomly select one node as the starting node, and travel to the next
along the horizontal cables in the same horizontal plane. If we repeat this in a consistent
direction, eventually, we must come back to the starting node. The nodes and horizontal
cables that have been visited in the trip are said to belong to the same circuit. If there
are more than one circuits in the plane, the horizontal cables are said to be divisible;
otherwise, they are indivisible.

Denote the number of circuits of the horizontal cables in one plane by nc, and the
number of nodes in a circuit by ns. Each time we travel along a horizontal cable of the
circuit, we pass by h nodes, and hence by the time we return to the starting node, we
have passed hns nodes. Suppose that, in this circuit, we have travelled around the plane
hs times, and have hence passed nhs nodes. Thus,

nsh = nhs. (20)

The number of circuits nc in each horizontal plane is then given by

nc =
n

ns
=

h

hs
. (21)

The necessary and sufficient condition for the divisibility of horizontal cables in the
same plane is that there is more than one circuit of nodes; i.e., nc 6= 1. And hence, we
have

h 6= hs. (22)

If the structure is divisible, the above parameters give useful information about the
substructures. There will be nc substructures, and they will have ns nodes in each plane,
with a connectivity of the horizontal cables of hs.

Consider, for example, the divisible structure D2,2
6 shown in Fig. 6(a): node N0 is con-

nected to nodes N2 and N4 by the horizontal cables in the upper plane. It is easy to see
that these three nodes form a circuit. This circuit does not have any mechanical relation
with the other constituted by the nodes N1, N3 and N5. The same situation occurs for the
horizontal cables in the bottom plane. Therefore, the structure has in total four circuits,
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= +

(a) h = 2, ns = 7, hs = 1, nc = 2

= +

(b) h = 4, ns = 7, hs = 2, nc = 2

= +

(c) h = 6, ns = 7, hs = 3, nc = 2

Fig. 7. An example of divisible horizontal cables (n = 14).

two in each plane:

Circuit Nodes
1 N0, N2, N4

2 N1, N3, N5

3 N6, N8, N10

4 N7, N9, N11

(23)

In this case, travelling along one circuit takes us around the z-axis only once, but this
is not always the case. For example, consider one of the planes of the structure with D14

symmetry as shown in Fig. 7; we can have the following cases where the horizontal cables
are divisible.

(1) In the case of h = 2, as shown in Fig. 7(a), the horizontal cables in the plane can
be divided into two circuits (nc = 2), seven nodes in each (ns = 7). The horizontal
cables connect each node to the adjacent node in the circuit (hs = 1).

(2) When h = 4, as shown in Fig. 7(b), the horizontal cables are divisible, with seven

10



(a) indivisible (b) divisible (c) indivisible

Fig. 8. An example of indivisible structure, D2,1
6 : (a) shows the entire structure; in (b), the vertical

cables have been removed in the figure, to show that the remaining structure is divisible; in (c)
the horizontal cables have been removed, showing that the vertical cables and the struts together
connect all of the nodes, and the entire structure is therefore indivisible.

nodes in each circuit. For each circuit, the horizontal cables now connect a node to
the second node away in that circuit, i.e., hs = 2.

(3) When h = 6, as shown in Fig. 7(c), the horizontal cables are again divisible. Now
for each circuit, the horizontal cables connect a node to the third node away in that
circuit, i.e., hs = 3.

Note that Eq. (22) is only the divisibility condition for the horizontal cables but not
for the whole structure. For example, the structure D2,1

6 in Fig. 8(a) has two circuits of
horizontal cables in each plane of nodes. However, those circuits are all connected by the
struts and vertical cables, and the structure is indivisible. Hence, connectivity of vertical
cables, which connect the circuits in different horizontal planes, should also be taken into
consideration.

3.2 Divisibility of Vertical Cables

Suppose that the horizontal cables are divisible: the nodes in the circuits of horizontal
cables containing N0 and Nn are

Circuit 1: N0, Nh, N2h, . . . , N(ns−1)h

Circuit 2: Nn, Nn+h, . . . , Nn+(ns−1)h
(24)

Circuit 1 and Circuit 2 are connected by struts from our assumption for the connectivity
of struts. If they are also connected by vertical cables, then the substructure constructed
from these nodes can be completely separated from the original structure. Thus, the
structure is divisible if the horizontal cables are divisible, and the following relationship
holds

v = vsh, with vs integer. (25)

As contrasting examples, consider D2,2
6 and D2,1

6 , which both have the same arrangement
of (divisible) horizontal cables. The structure D2,2

6 shown in Fig. 6(a) satisfies Eq. (25) with
vs = 1 and hence is divisible. By contrast, the structure D2,1

6 in Fig. 8(a) has v/h = 0.5,
does not satisfy Eq. (25), and is indivisible.

In summary, Eqs. (22) and (25) are the necessary and sufficient conditions for a divisible
prismatic tensegrity structure. If both are satisfied, the original structure Dh,v

n can be
divided into nc identical substructures Dhs,vs

ns .
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4. Stability
In this section we will consider the stability of prismatic tensegrity structures. In par-

ticular we will investigate the effect of a number of critical factors: the main one is the
connectivity of the structure, but the height/radius ratio and the ratio of the stiffness to
the force density of the members may also be important. All of the results were calculated
using symmetry-adapted coordinates, and the common notation used in applied group
representation theory is used to describe the results.

Although we will define here the stability criteria that we use, we will not derive all of
the relevant matrices; instead we will use the formulation in Guest (2006) directly.

4.1 Stability Criteria
From Guest (2006), the tangent stiffness matrix for a structure, K can be written as

K = AĜA
T

+ S, (26)

where A is the equilibrium matrix, which describes the geometry of the structure, S is
the geometrical stiffness matrix (or stress matrix in Guest (2006)), which depends on the
connectivity of the structure and the level of stress, and Ĝ is a diagonal matrix containing
modified axial stiffness for the members, AE/l − q.

Rigid-body motions have no stiffness. To simplify the definitions, we will assume that
rigid-body motions of the entire structure have been condensed out of the formulation, and
the matrices are only related to displacements that cause deformation of the structure.
Alternatively, the six zero eigenvalues of the stiffness matrices that correspond to rigid-
body motions can be ignored in the stability investigation.

4.1.1 Stability
We say that a structure is stable when the tangent stiffness matrix K is positive definite.

One way of considering positive-definiteness is to look at the eigenvalues of K. The smallest
eigenvalue is the minimum stiffness for some deformation of the structure; if the smallest
eigenvalue of K is positive, then the structure is stable.

4.1.2 Prestress Stability
For prestress stability, we consider the case when the members are axially rigid. In the

formulation of Eq. (26), the diagonal entries in Ĝ become infinite. The only non-infinite
eigenvalues of K will then come about from deformations that are in the nullspace of AT

— first order mechanisms of the structure. Consider that there are m mechanisms, and
the mechanisms can be described by a set of basis vectors, m1 . . .mm. If these mechanisms
are written as the columns of a matrix M:

M =
[
m1 m2 · · · mm

]
, (27)

then a reduced stiffness matrix Q can be written as

Q = MTSM. (28)

We say that a structure is prestress stable when the reduced stiffness matrix Q is
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positive definite; i.e., if the smallest eigenvalue of Q is positive, then the structure is
prestress stable.

4.1.3 Super Stability

Super stability guarantees that the reduced stiffness matrix is positive definite for any
geometric realisation, i.e. for any R and H. We use the sufficient conditions for super sta-
bility of tensegrity structures presented by Connelly (1999) or Zhang and Ohsaki (2007):

(1) The member directions do not lie on the same conic at infinity (Connelly, 1999),
or equivalently, the geometry matrix of the structure has rank of six for three-
dimensional structures (Zhang and Ohsaki, 2007);

(2) S is positive semi-definite;
(3) S has maximal rank, which for prismatic tensegrity structures is 6n− 12.

For prismatic tensegrity structures that are indivisible, the first condition is satisfied,
and hence, only the last two conditions need to be considered for verifying super stability
of the structures.

When the structure is divisible, the reduced stiffness matrix Q must have at least
one zero eigenvalue, corresponding to the relative motion of the substructures. Thus, the
structure is unstable.

When the structure is indivisible, and satisfies the third condition, but S is not positive
semi-definite, then the structure may, or may not, be prestress stable. S must have at
least one negative eigenvalue, but whether or not this leads to a negative eigenvalue of Q
depends upon a subtle interplay of the geometrical stiffness matrix and the mechanisms,
which themselves depend upon the geometric realisation of the structure.

4.2 Symmetry-adapted Forms

Symmetry can be used to simplify calculations and clarify the presentation of the results
(Kangwai and Guest, 2000; Kangwai et al., 1999). By using a symmetry-adapted coor-
dinate system, the matrices in a structural calculation can be block-diagonalised. Here,
we eventually block-diagonalise the reduced stiffness matrix Q. The block-diagonalisation
is simply an orthogonal change of basis, and does not affect the eigenvalues — thus
the eigenvalues of Q are the assembly of the eigenvalues of the individual blocks of the
symmetry-adapted Q̃.

To block-diagonalise the matrices, we consider symmetry subspaces. Each symmetry
subspace corresponds to one of the irreducible representations µ of the group. For the dihe-
dral symmetry group Dn, the irreducible representations are, A1, A2, B1, B2, E1, . . . , En/2−1

for n even, and A1, A2, E1, . . . , E(n−1)/2 for n odd (Bishop, 1973).

The blocks of the symmetry-adapted geometrical stiffness matrix S̃ and equilibrium
matrix Ã corresponding to µ are denoted by S̃µ and Ãµ, respectively. The symmetry-
adapted mechanisms lying in the null-space of the transpose of Ãµ are written as columns
of M̃µ. The analytical formulations of these symmetry-adapted matrices are available in
Zhang et al. (2008). Then, the block Q̃µ corresponding to the representation µ of the
symmetry-adapted quadratic form Q̃ is

Q̃µ = (M̃µ)TS̃µM̃µ. (29)
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(a) top view (b) side view

Fig. 9. The indivisible structure D3,2
7 .

The matrices Q̃µ have dimensions of only one or two for prismatic tensegrity structures.
And the structure is prestress stable if and only if Q̃µ are positive definite for all repre-
sentations µ. Note that we have excluded from Q̃µ the rigid-body motions, which in these
cases would correspond to zero eigenvalues of Q̃A2 and Q̃E1 .

4.3 Critical Factors

Here, we show that the prestress stability of a prismatic tensegrity structure is not only
influenced by the connectivity of horizontal cables but also that of the vertical cables, and
furthermore, is sensitive to the height/radius ratio. We also show that the selection of
materials and level of self-stress is one of the critical factors for the stability of prestress
stable structures.

4.3.1 Height/Radius Ratio

Consider the indivisible structure D3,2
7 in Fig. 9 as an example. The relationship between

the minimum eigenvalues of each block Q̃µ and the height/radius ratio is plotted in Fig. 10.

The matrix Q̃A1 is always positive definite, while positive definiteness of Q̃E2 and Q̃E3

vary depending on the height/radius ratio. The structure is prestress stable only when
the height/radius ratio falls into the small region [0.75, 1.05], which is shown as a shaded
area in the figure.

Consider another indivisible structure D2,3
8 with 16 nodes and 32 members as shown

in Fig. 11. The dihedral group D8 has four one-dimensional and three two-dimensional
representations. The relationship of the minimum eigenvalues of Q̃µ and the height/radius
ratio is plotted in Fig. 11. The prestress stability region of the structure ranges from 0.4
to 3.1, which is much wider than that of the structure D3,2

7 .

These examples have shown that the height/radius ratio of the structure can be a critical
factor in the prestress stability of prismatic tensegrity structures.

14



0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

6

8

A1

E2

E3

Prestress Stable Region

Prestress Stability

Height/Radius

M
in

im
u
m

 R
el

at
iv

e 
E

ig
en

v
al

u
e

Fig. 10. Influence of the height/radius ratio on the prestress stability of the structure D3,2
7 . The

structure is prestress stable when the ratio is in the range [0.75, 1.05]. In order to non-dimen-
sionalise the results, the eigenvalues of Q are plotted relative to the force density in the vertical
cables.

4.3.2 Connectivity
As a prismatic tensegrity structure is super stable only if h = 1 (Connelly and Terrell,

1995), it is clear that stability of this class of structures is directly related to the connec-
tivity of horizontal cables. It has also been illustrated previously that in some special cases
with the right height/radius ratio, the structure can still be prestress stable although it is
not super stable. However, this is dependent upon the connectivity of both the horizontal
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Fig. 11. Influence of the height/radius ratio on the prestress stability of the structure D2,3
8 . The

structure is prestress stable when the ratio is in the range [0.40, 3.10]. The eigenvalues of Q are
plotted relative to the force density in the vertical cables.
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Fig. 12. Influence of the height/radius ratio on the prestress stability of the structure D2,1

8 . The
structure is never stable. The eigenvalues of Q are plotted relative to the force density in the
vertical cables.

and the vertical cables.
As an example, consider the structures D2,1

8 and D2,3
8 , neither of which is super stable,

and which only differ in the connectivity of their vertical cables. As we have seen in
Fig. 11, D2,3

8 is prestress stable for a limited range of height/radius ratio. By contrast,
the structure D2,1

8 in Fig. 12 is never prestress stable, because the minimum eigenvalue of
Q̃E3 is always negative.

4.3.3 Materials and Self-stresses
So far, the prestress stability is investigated based on the positive definiteness of the

quadratic form Q of the geometrical stiffness matrix with respect to the mechanisms,
where the members are assumed to be made of materials with infinite stiffness. Here we
show that selection of materials and level of self-stresses does also affect the stability of
the structures when they are not super stable.

We make the simplification that all of the struts and cables have the same axial stiffness.
The key parameter is then the ratio of the axial stiffness to the prestress in the structure.
Suppose that the cables and struts have axial stiffness AE/l, and that the vertical cables
carry a force density of qv. In the following example, we consider the stiffness for different
values of k = AE/(lqv), where k is dimensionless. If the structure is linear-elastic, the
strain due to a particular prestress will be 1/k, and thus even values of k = 100 are too
small to be realistic for conventional structures.

Fig. 13 shows the smallest eigenvalues of the tangent stiffness matrix for the structure
D3,2

7 , which is prestress stable with the height/radius ratio of 1.0. Results are plotted for
k = 10, 100, 1000, and for the infinite stiffness case. As k reduces, the structure becomes
less stable, and eventually loses stability altogether. Thus, the selection of materials and
level of self-stress is also a critical factor to the stability of tensegrity structures.

5. Catalogue
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Fig. 13. The influence of the stiffness/self-stress ratio k on the stability of the structure D3,2
7 .

When k reduces, the structure becomes less stable. The eigenvalues of K are plotted relative to
the force density in the vertical cables.

After the stability investigation, we are now in the position to present a catalogue
describing the stability of prismatic tensegrity structures for small n:

• h = 1: The structures are super stable, and therefore are prestress stable.
• h 6= 1: There are two cases:
· divisible:

The structures are divisible, if both of the conditions (22) and (25) are satisfied, and
hence, they are unstable,

· indivisible:
Prestress stability can be verified based on the reduced stiffness matrix Q, defined in
Eq. (28).

We present in Table 2 a complete catalogue of prismatic tensegrity structures with
symmetry Dn for n ≤ 10.

From Table 2, it is easy to tell the stability of prismatic tensegrity structures. For
example, the structure D2,2

6 can be divided into two identical substructures D1,1
3 . Another

example: for the structures with n = 10 and h = 2, the structure D2,3
10 is prestress stable

in the region [0.70,1.35], and the structure D2,5
10 in Fig. 14 is always prestress stable. Note

that all struts of the structure D2,5
10 run across the central (origin) point.

6. Discussion and Conclusion

A simple symmetry method has been presented to determine the self-equilibrated con-
figuration of a prismatic tensegrity structure with dihedral symmetry. Rather than consid-
ering the whole structure, consideration of only one node is sufficient to find force densities
and possible configurations.

The necessary and sufficient conditions for the divisibility of prismatic tensegrity struc-
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Table 2
The stability of prismatic tensegrity structures Dh,v

n . ‘s’ denotes super stable, ‘u’ denotes un-
stable, and ‘p’ indicates that the structure is not super stable but is always prestress stable
with arbitrary height/radius ratio. If the structure is prestress stable only in a specific region
of height/radius ratio from h1 to h2, then this region is given by [h1, h2]; and if the structure is
divisible, its substructures are given.

h
n = 3 1
v 1 s

h
n = 4 1 2
v 1 s u

2 s 2D1,1
2

h
n = 5 1 2
v 1 s u

2 s u

h
n = 6 1 2 3

1 s u u
v 2 s 2D1,1

3 u
3 s p 3D1,1

2

h
n = 7 1 2 3

1 s u u
v 2 s u [0.75,1.05]

3 s u u

h
n = 8 1 2 3 4

1 s u u u
v 2 s 2D1,1

4 u 2D2,1
4

3 s [0.40,3.10] u u
4 s 2D1,2

4 [0.35,2.35] 4D1,1
2

h
n = 9 1 2 3 4

1 s u u u
v 2 s u u u

3 s u 3D1,1
3 u

4 s u [0.20,1.60] u

h
n = 10 1 2 3 4

1 s u u u u
2 s 2D1,1

5 u 2D2,1
5 u

v 3 s [0.70,1.35] u [0.75,1.25] u
4 s 2D1,2

5 u 2D2,2
5 u

5 s p p p 5D1,1
2

tures have been presented based on the connectivity of horizontal and vertical cables.
Divisible structures have their own states of self-stresses and rigid-body motions so that
they can be physically separated into several identical substructures.

The prestress stability of prismatic tensegrity structures is demonstrated to be related
to the connectivity of the cables, and is also sensitive to the height/radius ratio. It is also
shown that stability of a tensegrity structure that is not super stable is influenced by the
selection of materials and level of self-stress.

A catalogue of the prismatic tensegrity structures with relative small number of mem-
bers has been presented. We have also developed a Java program to enable designers to
interactively design the prismatic tensegrity structures. The program is published online:
http://tensegrity.AIStructure.com/prismatic/
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10 that is not super stable but is always prestress stable.
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