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The design of a deployable structure which deploys from a compact bundle of six parallel bars
to a rectangular ring is considered. The structure is a plane symmetric Bricard linkage. The
internal mechanism is described in terms of its Denavit–Hartenberg parameters; the nature of
its single degree of freedom is examined in detail by determining the exact structure of the
system of equations governing its movement; a range of design parameters for building feasible
mechanisms is determined numerically; and polynomial continuation is used to design rings
with certain specified desirable properties.
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1. Introduction

Several different types of foldable frames, which in their deployed configurations form (often regular) polygons, have
appeared in literature in the past 40 years. Bennett or Bricard [1] linkages are frequently used as the basis of linkages for foldable
deployable frames. An early example appears in [2], in which an even number of bars are linked together in such a way that they
can be folded into a tight bundle, and unfolded to form a regular polygon. In the six bar case, a three-fold symmetric linkage
results [3], while in the four bar case, a Bennett linkage is formed [4,5]. Four bar foldable frames have been extensively examined
[6,4,7]. For the six-bar case, Wohlhart [8,9] and Racilla [10] have focussed on the kinematics of the trihedral, or ‘rectangular’
member of the Bricard family. In [11], Pellegrino et al. proposed a new family of six bar foldable frames. A two-fold symmetric
member of this family has been proposed as a support for a solar blanket, and its kinematics examined numerically [12,13].
Recently, the two-fold symmetric 6R foldable frame was identified as a special line and plane symmetric Bricard linkage [14]. This
particular variant does, however, suffer from problems with bifurcations (although certain designs avoid this). If one of the two
planes of symmetry is removed, a mobile 6R ring which experiences fewer problems with bifurcations remains. An example is
shown in Figs. 1 and 2. In this paper, a greater understanding of the plane symmetric 6R foldable ring is sought by first identifying
the ring as a plane symmetric Bricard linkage, examining the nature of its mobility using a cascade of homotopies [15] to identify
positive dimensional solution sets (an application of polynomial continuation), determining a range of design parameters for
building feasible mechanisms of this type, deriving a closed form expression for the linkage's kinematics, and finally employing
polynomial continuation, again, in an attempt to design a family of plane symmetric 6R foldable rings with certain desirable
practical properties.

2. Linkage specification

The two-fold symmetric ring of [14] has two different bar lengths (l1 and l2), and the bars are all tilted from the vertical by a
single angle μ. Square cross-sectioned, prismatic (i.e., untwisted) bars were used. By contrast, the 6R linkage considered here has
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all six bar lengths the same (l), and four separate bar tilt angles (α′
1;α

′
2;β1 and β2), introducing a requirement that, if the bars

have a square cross-section, some of the bars must be twisted in order to match the prescribed tilt angles at each end. A simplified
diagram of the deployed linkage with all design parameters labelled is given in Fig. 3, while a representation of the physical
linkage is given in Fig. 4, in which the twists in the bars are clearly visible. While a square cross-section is not required to
construct the linkage, it does aid in visualising the bar twist.

There are six hinges (labelled h1−h6), each with a single rotational degree of freedom connecting the bars in a closed loop.
The plane of symmetry is preserved through the folding motion. It is labelled as the XZ plane in the fully deployed/open
configuration, shown in Fig. 3. The plane contains the points p6 and p3, and the vectors h6 and h3, which are inclined to the Z axis
by angles β1 and β2 respectively. Also when deployed, hinges h1 and h2 lie in planes rotated from the YZ plane by 45° about the Z
axis. The angles these hinges form to the horizontal can be specified in two important ways. When constructing physical models
of the plane-symmetric 6-bar, the most intuitive form is obtained by taking the projection of the hinges onto the YZ plane, and
considering the angle formed between that projection and the XY plane, labelled here as α′

1 and α′
2. This projection is shown in

Fig. 3. This is a more intuitive definition as it specifies the tilt angle that a square cross-sectioned bar would need to form with the
horizontal before cuts at 45° are made. However, futuremathematical results are simplified by directly taking the angle between the
XY plane and the hinge vectors, written as α1 and α2 here. Relationships between the two α definitions can be constructed as:

tanα ¼ 1ffiffiffi
2

p tanα′

⇒sinα ¼ sinα′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2α′ þ 2cos2α′

p
⇒sin2α ¼ sin2α′

1þ cos2α′

cos2α ¼ 2cos2α′

1þ cos2α′
:

In order for all the bars to be parallel when fully stowed, the hinge vectors h6 and h3 must also be parallel in the fully folded
configuration since they must be perpendicular to both the plane of symmetry and the ends of the bars to which they are

Fig. 1. Folding process for a linkage with parameters α1=π/4, α2=−π/4 and γ=π/2. Each bar is shown as a twisted prismatic bar with square cross-section.

Fig. 2. The folding of a wooden model of the linkage shown in Fig. 1.
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attached. In general, h6 and h3 will not be parallel when folded for a given choice of β1 and β2. The parallel condition can be
enforced by specifying a simple linear relationship:

β1 ¼ 2α′
1−γ

β2 ¼ π−2α′
2 þ γ ð1Þ

where an extra variable, γ, has been introduced to replace β1 and β2. The variable γ describes the relative rotation of the two
end bars in the folded state. Note that it is the (projected) α′

1 and α′
2 definitions which have been used here. Three variables

( α′
1;α

′
2;γ

� �
or equivalently {α1,α2,γ}) remain to specify the linkage.

It can be shown that hinges 1 and 2 have maximum opening angles (assuming θij=0 when fully deployed):

θ61max ¼ π−2tan−1 tan α′
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ tan2α′
1

q
2
64

3
75 ¼ π−cos−1 cos2α′

1

� �

θ12max ¼ π−2tan−1 tan α′
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ tan2α′
2

q
2
64

3
75 ¼ π−cos−1 cos2α′

2

� �
:

ð2Þ
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Fig. 3. Design variables of the plane-symmetric 6R linkage with plane of symmetry shown.

Fig. 4. Example of plane-symmetric 6R foldable linkage with visible bar twist for α1=π/4, α2=−π/4 and γ=π/2.
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At these maximum angles, bars 6 and 2 are both colinear with bar 1, indicating full folding of the linkage. These definitions will
be useful for simulation purposes later.

3. Identification as a Bricard plane symmetric case

Fig. 5 illustrates the Denavit–Hartenberg parameters for the plane symmetric Bricard linkage. The relationships (implied by
symmetry) between these parameters (from [16]) are:

a61 ¼ a56; a12 ¼ a45; a23 ¼ a34
α61 þ α56 ¼ α12 þ α45 ¼ α23 þ α34 ¼ π
R6 ¼ R3 ¼ 0;R1 ¼ R5;R2 ¼ R4:

ð3Þ

It is possible to derive a relationship between the design variables α1, α2, β1 and β2 of the plane symmetric 6R foldable ring,
and the Denavit–Hartenberg parameters. This is achieved by solving a series of simple linear equations which arise from the
linkage's geometry. Start with the link between hinges 6 and 1. The Bricard linkage joints must lie on a line which passes through
pi(0) and is parallel to ĥ i 0ð Þ, where the notation (0) represents positions and vectors in the deployed configuration, and ĥ
represents a unit vector:

p6 ¼ p6 0ð Þ þ tl6ĥ 6 0ð Þ
p1 ¼ p1 0ð Þ þ tl1ĥ1 0ð Þ:

Here, tl6 and tl1 are unknown scaling factors. It is apparent that R6=0, but also that a61 is non-zero. a61 is perpendicular to both
ĥ6 0ð Þ and ĥ1 0ð Þ, so we define a new vector of unit length as:

a′61 ¼ ĥ6 0ð Þ � ĥ1 0ð Þ:

The length of a61 is unknown, so a third scaling factor, ta61, is introduced. The governing equation is given in Eq. (4).

p6 þ ta61a
′
61

⇒p6 0ð Þ þ tl6ĥ6 0ð Þ þ ta61a
′
61

¼ p1

¼ p1 0ð Þ þ tl1ĥ1 0ð Þ : ð4Þ

This can easily be solved to give tl6, tl1 and ta61, and hence p6, p1 and a61 ¼ ta61a′61
�� ��.

h3

23
23

R2

12

12

h2

61

R1

h1

61

h6

h5

h4

Fig. 5. Plane symmetric Bricard linkage (case illustrated is from linkage with α1=π/4, α2=−π/4 and γ=π/2). The plane of symmetry is defined by hinges h6

and h3.
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Moving on to the next link (between hinges 1 and 2), define:

p2 ¼ p2 0ð Þ þ tl2ĥ2 0ð Þ

as well as:

a′12 ¼ ĥ1 0ð Þ � ĥ2 0ð Þ:

Since R1 is non-zero, introduce the unknown tR1 to the governing Eq. (5).

p1 þ tR1ĥ1 0ð Þ
⇒p1 þ tR1ĥ1 0ð Þ

¼ p2 þ ta12a
′
12

¼ p2 0ð Þ þ tl2ĥ2 0ð Þ þ ta12a
′
12

ð5Þ

From this tl2, tR1 and ta12 can be found, which in turn gives p2, R1= tR1 and a12 ¼ ta12a′12
�� ��.

Finally, consider the link between hinges 2 and 3 by defining:

p3 ¼ p3 0ð Þ þ tl3ĥ3 0ð Þ

as well as:

a′23 ¼ ĥ2 0ð Þ � ĥ3 0ð Þ

and Eq. (6).

p2 þ tR2ĥ2 0ð Þ
⇒p2 þ tR2ĥ2 0ð Þ

¼ p3 þ ta23a
′
23

¼ p3 0ð Þ þ tl3ĥ3 0ð Þ þ ta23a
′
23

: ð6Þ

From this tl3, tR2 and ta23 can be found, which in turn gives p3, R2= tR2 and a23 ¼ ta23a′23
�� ��.

The important parameters (obtained using Mathematica [17]) are:

a61
l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4 cos2 α1ð Þ

2
ffiffiffi
2

p
sin 2α1ð Þ sin 2β1ð Þ þ 3 cos 2α1ð Þ−1ð Þ cos 2β1ð Þ þ cos 2α1ð Þ þ 5

s

a12
l

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 α1−α2ð Þ

2 cos 2α1ð Þ þ 4 sin2 α1ð Þ cos 2α2ð Þ þ 6

s

a23
l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4 cos2 α2ð Þ

−2
ffiffiffi
2

p
sin 2α2ð Þ sin 2β2ð Þ þ 3 cos 2α2ð Þ−1ð Þ cos 2β2ð Þ þ cos 2α2ð Þ þ 5

s

and

R1

l
¼

ffiffiffi
2

p 4 cos α1ð Þ
2
ffiffiffi
2

p
sin 2α1ð Þ sin 2β1ð Þ þ 3 cos 2α1ð Þ−1ð Þ cos 2β1ð Þ þ cos 2α1ð Þ þ 5

−2 cos α1ð Þ þ sin α1ð Þ sin α2ð Þ cos α2ð Þð Þ
cos 2α1ð Þ þ 2 sin2 α1ð Þ cos 2α2ð Þ þ 3

 !

R2

l
¼

ffiffiffi
2

p
sec α2ð Þ: − 4 cos2 α2ð Þ

−2
ffiffiffi
2

p
sin 2α2ð Þsin 2β2ð Þ þ 3cos 2α2ð Þ−1ð Þcos 2β2ð Þ þ cos 2α2ð Þ þ 5

þ sin 2α1ð Þsin 2α2ð Þ þ 4cos 2α2ð Þ þ 4 sin2 α2ð Þcos 2α1ð Þ þ 8
2cos 2α1ð Þ þ 4 sin2 α1ð Þcos 2α2ð Þ þ 6

−1

 !
:

The twist angles can be simply determined as:

α61 ¼ cos−1 bĥ6 0ð Þ; ĥ1 0ð Þ >
� �

α12 ¼ cos−1
bĥ1 0ð Þ; ĥ2 0ð Þ >
� �

α23 ¼ cos−1 bĥ2 0ð Þ; ĥ3 0ð Þ >
� �

As a numerical example, consider the case of α1=π/4, α2=−π/4, and β1=β2=0 (γ=π/2). This can be written in terms of
Denavit–Hartenberg parameters for the plane symmetric case:

a61
l

¼ 1ffiffiffi
2

p ;
a12
l

¼
ffiffiffi
2
3

r
;
a23
l

¼ 1ffiffiffi
2

p
R1

l
¼ 2

3
;
R2

l
¼ −2

3

α61 ¼ π
4
;α12 ¼ 2π

3
;α23 ¼ 3π

4
:
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4. Loop closure equations

It is possible to construct a set of loop closure equations bydefining coordinate systems attached to each link, and then deriving the
transfer matrices which describe the transformation from one coordinate system to the next. This method is illustrated in [14] and
[13], where it is used to simulate themotion of closed loop linkages, and to study their bifurcations. A transfermatrix is typically 4×4,
and consists of a 3×3 rotation matrix, say R, and a 3×1 translation vector, say v. These parts are arranged as:

T ¼ R v
0 0 0 1

� 	

If a coordinate system is attached to the end of a link in a linkage, then a transfer matrix can be used to rotate and translate it to
the location of the coordinate system attached to an adjacent link in a single operation. Repeating this operation around a linkage
which is also a closed loop will eventually lead back to the original link. Mathematically, this can be expressed as:

F ¼ T61T56T45T34T23T12−I ¼ 0

where Tab defines the transfer between the coordinate system attached to link a to that attached to b. The coordinate system at
each joint is aligned so that the z-axis is aligned with the hinge axis. Before each translation, the x-axis is rotated such that it
points along the current bar towards the next joint. As there are single degree of freedom connections between the links, each
transfer matrix can be separated into a part which deals only with rotation about the z-axis, L3, and a part which relates to the
unchanging geometry of the link, TabL , and Tab=Tab

L L3(θab). The equations above then become:

F ¼ TL
61L3 θ61ð ÞTL

56L3 θ56ð ÞTL
45L3 θ45ð ÞTL

34L3 θ34ð ÞTL
23L3 θ23ð ÞTL

12L3 θ12ð Þ−I ¼ 0: ð7Þ

Explicitly, the transfer matrices for each of the six links are:

TL
12 ¼ L1 β2ð ÞML3 π=4ð ÞL1 α2−π=2ð Þ

TL
23 ¼ L1 π=2−α2ð ÞL3 π=4ð ÞML1 −β2ð Þ

TL
34 ¼ L1 π=2−α1ð ÞL3 π=4ð ÞML3 π=4ð ÞL1 α2−π=2ð Þ

TL
45 ¼ L1 −β1ð ÞML3 π=4ð ÞL1 α1−π=2ð Þ

TL
56 ¼ L1 π=2−α1ð ÞL3 π=4ð ÞM π=4ð ÞL1 β1ð Þ

TL
61 ¼ L1 π=2−α2ð ÞL3 π=4ð ÞML3 π=4ð ÞL1 α1−π=2ð Þ

ð8Þ

where L1 is a rotation about the x-axis, and M defines a translation of length l along each link:

M ¼
1 0 0 −l
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775:

The single off-diagonal entry in matrix M has a negative sign because the effect of applying M to a point in space is to rewrite
that point as a location in the basis of the new, translated coordinate system. Shifting a coordinate system in the positive x-direction
requires the inclusion of a negative term in the (1,4) location of matrix M. The matrix Eq. (7) can be separated into six individual
equations which together ensure loop closure. As in [13], the strictly upper triangular part of this matrix equation provides six
independent scalar equations necessary to form a square system:

F θ12; θ23; θ34; θ45; θ56; θ61ð Þ ¼

F1;2
F1;3
F1;4
F2;3
F2;4
F3;4

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 0: ð9Þ

Having derived these loop closure equations, it is possible to simulate the motion of the linkage using a type of predictor–
corrector approach detailed in [13] and [14]. One particularly useful by-product of this method is a matrix whose singular values
can be used to examine the linkage's mobility at each point of the unfolding process. The structure of these equations will be
examined in the following section.
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5. Examination of mobility using a cascade of homotopies

The plane-symmetric six-bar ring can be described as an over-constrained mechanism, or as possessing a geometric degree of
freedom. This implies that it does not satisfy the Kutzbach Criterion [18], which must be due to some special feature of the
linkage's geometry, in this case its symmetry. It is possible to determine mathematically if a linkage is likely to possess a
geometric degree of freedom, and if so, of what order, and in how many disconnected sets, by using the method of witness sets
described in [19] and [15]. This type of analysis forms part of a broader field known as Polynomial Continuation [20–22] in which
all finite solutions to a system of polynomial equations are found by first finding the solutions to a separate system of equations
with a similar polynomial structure, and then numerically tracking these known solutions into those of the unknown system. The
method can be used to identify finite, geometrically isolated solutions, or with a few additions, to find curves of solutions through
the solution space.

The loop closure equation of Section 4 can be simplified by assuming that hinge angles reflected in the plane of symmetry will
be equal, as:

θ12 ¼ θ34
θ45 ¼ θ61:

Recall that these hinge angles are defined as being zero when the foldable ring is in the fully deployed state. Finally, the
maximum order of the resulting polynomial closure equations can be reduced by rearrangement into the form of Eq. (10).

F ′ ¼ L3 θ61ð ÞTL
34L3 θ12ð ÞTL

23L3 θ12ð ÞTL
12− TL

45

� �−1
L3 −θ56ð Þ TL

56

� �−1
L3 −θ61ð Þ TL

61

� �−1
L3 −θ12ð Þ ¼ 0 ð10Þ

which is written in terms of the four unknowns {θ12,θ23,θ56,θ61}. Eq. (10) can be written in pure polynomial form by replacing the
trigonometric functions of the four unknowns with new variables by setting cos(θij)=Cij and sin(θij)=Sij. Four elements of
Eq. (10) can be chosen, and augmented with standard trigonometric identities relating the new variables, to construct a system of
equations of the form:

C2
12 þ S212−1

C2
23 þ S223−1

C2
56 þ S256−1

C2
61 þ S261−1

F ′1;2
F ′1;3
F ′2;3
F ′3;4

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ 0: ð11Þ

Eq. (11) defines a relationship between each of the hinge angles. It is a system of polynomial equations in which the
coefficients are written in terms of the 6-bar design parameters α1, α2, β1, β2 and the bar length l. It has a mixed volume [23] of
176, which means there is a tight upper bound of 176 on the number of finite solutions. If this is, in fact, an over-constrained
mechanism, then it can be expected that positive dimensional solution sets will be present. A positive dimensional solution set is
a continuum of solutions which may exist on a line, plane, or higher dimensional manifold. Often, more than one curve or
manifold of solutions will be present in a system of equations. If these curves do not intersect at any point, they are known as
irreducible components. The appearance of positive dimensional solution sets in the closure equations of a linkage is a sign that the
linkage may actually be mobile. The dimensionality of the solution set corresponds to the degree of freedom of the linkage. For
example, if a one-dimensional solution set is found, then it is possible that the linkage will be mobile with a single degree of
freedom. Since Eq. (11) contains four unknowns, it is possible that there could be as high as a n−1=3-dimensional solution set.
It is known a priori, however, that no three or two-dimensional solution sets are present. By introducing to the system an
additional affine equation of dimension equal to that of the solution set sought andwith randomly generated complex coefficients
(a complex hyperplane), a witness set can be generated. After introducing a single, random complex intersecting hyperplane into
the equations (increasing the mixed volume to 400), and solving the resulting system using standard continuation methods, it
was discovered that Eq. (11) has a one-dimensional solution set whose witness set contains 28 elements. This first step also
generated a further 246 solutions which do not lie on a one-dimensional curve of solutions. To determine which of these extra
solutions are actually zero-dimensional geometrically isolated points, a cascade step is required [15]. The cascade involves
gradually removing the intersecting plane, introduced earlier, from the equations by way of a new homotopy. Using this method a
zero-dimensional solution set, also with 28 members, was found. The members of the witness set were all found to belong to the
same irreducible component which must, therefore, represent the single mobile path known to exist in the real linkage. The
cascade process is represented in Fig. 6.
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It has been shown that the plane-symmetric six-bar linkage has a single irreducible component in one dimension, which has
28 members when the closure equations are posed as above. Since it is known that this linkage has a single geometric degree of
freedom, it can be stated that this irreducible component of degree 28 is responsible for its mobility. The fact that a linkage's
closure equations contain a positive dimensional solution set does not, in general, prove that a linkage will actually possess any
mobility, but suggests that it may be possible. To prove that a linkage does have a degree of freedom would require showing that
there is at least one irreducible component in purely real space, and that at least part of this lies in a feasible region of the linkage's
parameters.

6. Finding feasible designs

Only certain combinations of the three design parameters {α1,α2,γ} will lead to a linkage which behaves in a way which is
likely to be desirable. The most fundamental requirements of a linkage of the type under consideration are:

• linkage does not bifurcate at any point;
• linkage unfolds continuously and smoothly from closed to open (folded to deployed) configuration;
• hinge angles are allowed only to lie in the range spanned by the same hinge's angle when deployed, and the angle when
stowed;

• no two bars intersect during the unfolding process.

It has been observed that the satisfaction of the first three points ensures the satisfaction of the fourth, and so this fourth point
is not considered here.

Since there are only three design variables, it is possible to hold one of them constant, and construct a 2-dimensional plot
depicting the feasible space in terms of the other two. Holding γ constant, a set of feasibility contour lines can be plotted, as in
Fig. 7. The γ dependence of the feasible region is indicated in Fig. 8.

Points of note about these feasibility graphs are:

• we choose the range of values for α1 and α2 as (−π/2, π/2] (other values can be mapped into this range);
• we choose the range of values for γ as (−π, π] (other values can be mapped into this range);
• there is always a plane of symmetry defined by α1=α2;
• plots for the range γ ∈ (−π, 0] can be obtained by using γ=γ0−π, where γ0 is in the range (0,π].

The loop closure equations (Eq. (9)) were used as the basis of construction for each of the contour lines in Fig. 7. Many
combinations of design variables will lead to a linkage which bifurcates somewhere in its range of movement. These combinations
are marked as regular dashed lines. Some of the dashed lines represent bifurcations which occur outside the standard stowed-
deployed range of motion (often a configuration the linkage could only reach if it passed through itself), but they are included for
completeness. The bifurcation contours of key interest are those which mark a boundary between linkage designs which move
continuously from stowed to deployed, and those which do not. If the combination of variables which produce a linkage which
bifurcates right at the perimeter of this range can be determined, then a region of design variable space which produces feasible
linkages can be bounded. Because of the highly singular nature of the loop closure equations at a bifurcation point, standard
predictor–corrector methods were not suitable for following the bifurcation paths through the design parameter space. Instead, a
method which involved a (variable size) predictor step based on the previous step, and a subsequent unconstrained minimisation

400 initial solutions 126 paths to infinity

28 solutions with z = 0

246 remaining solutions

1D witness set

174 path to infinity

72 remaining solutions Filter stage 44 filtered out

28 0D solutions

Cascade step

Use 1D witness
set to perform
membership tests

Fig. 6. Homotopy cascade used to determine 1D and 0D witness sets for 6R linkage.
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was used. The objective function has the form:

F ¼ σ5 þ Fj j

where σ5 is the fifth singular value of the Jacobian of the loop closure equations (zero at a bifurcation), and |F| is the norm of the
closure equations themselves (Eq. (9)). Note that it is also possible to find the linkage's singular values by constructing:

D

Δθ12
Δθ23
Δθ34
Δθ45
Δθ56
Δθ61

2
6666664

3
7777775
¼

Δx
Δy
Δz
Δθx
Δθy
Δθz

2
6666664

3
7777775

0 /8 /4 3 /8 /2
- /2-3 /8- /4- /80/8/43 /8/2

/8

/4

3 /8

/2

5 /8

3 /4

7 /8

Bifurcation Free Region

2

1

Fig. 8. Variance of bifurcation free region with γ.

0

0

α

α

π/8
1

2

Feasible region based on 
bifurcation limits.
Feasible region based on 
bifurcation, and hinge 
directional limits.

Bifurcation contour.
Chart plane of symmetry.
Boundary of region for 
which θ12 opens with 
same sign as θ61.
Boundary of region for 
which θ23 always has the
same sign.

π/4 3π/8 π/2

-π/2

-3π/8

-π/4

-π/8

π/8

Fig. 7. Feasibility map for γ=5π/8.
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where

D ¼ p1 � h1 p2 � h2 p3 � h3 p4 � h4 p5 � h5 p6 � h6
h1 h2 h3 h4 h5 h6

� 	
:

The singular values of D can be used in just the same way as those of the Jacobian of Eq. (9).
The other contour lines, defining the boundaries of design for linkages with mono-directional hinges, were found using path

followers which use a predictor step in the direction of the null space of the Jacobian at the previous point, and a corrector based
simply on Newton's method.

For a larger collection of feasibility maps, see [24].

7. Simulating the linkage's kinematics

A loop closure equation based on each of the linkage's six hinge angles was derived in Section 4. In this section, a similar
equation is derived, but only in terms of two of the hinge angles. This equation will be referred to as a compatibility equation, as it
ensures the compatibility of each half of the ring at the plane of symmetry. This is made possible by way of the assumption that
the linkage is always symmetric about the plane defined by hinges h6 and h3. This assumption directly forms the basis of the
compatibility equation, which can be written as:

Φ ¼ p6−p3ð Þ � h6½ �⋅h3 ¼ 0: ð12Þ

This equation can be written entirely in terms of the variable hinge angles θ61 and θ12 (as well as the fixed design parameters
α1, α2 and γ). If one of the hinge angles, say θ61, is nominated as the driving, or input angle, then Eq. (12) can be used to find θ12 in
terms of θ61; the other four hinge angles can then be found.

If the locations of hinges 1 and 2 (p1 and p2) are held fixed in space, then the locations of hinges 6 and 3 (p6 and p3) can be
found by rotating their locations in the deployed configuration about unit hinge vectors ĥ1 and ĥ2. To rotate a vector v about a
(unit) axis w by an angle θ:

v′ ¼ v⋅wð Þw þ v− v⋅wð Þwð Þcos θþ v �w sin θ: ð13Þ

If the axis w passes through a point p, and the substitution u=v−p is made, then:

v′ ¼ u⋅wð Þw þ u− u⋅wð Þwð Þ cos θþ u�w sin θþ p ð14Þ

Applying Eq. (14) to the current problem for p1 and p2 gives:

p6 ¼ u1⋅ĥ1

� �
ĥ1 þ u1− u1⋅ĥ1

� �
ĥ1

� �
cos θ61 þ u1 � ĥ1 sin θ61 þ p1 0ð Þ

p3 ¼ u2⋅ĥ2

� �
ĥ2 þ u2− u2⋅ĥ2

� �
ĥ2

� �
cos θ12 þ u2 � ĥ2 sin θ12 þ p2 0ð Þ

ð15Þ

where u1=p6(0)−p1(0) and u2=p3(0)−p2(0). Hinge vectors h6 and h3 also change during the folding/unfolding process.
Applying Eq. (13) to the problem of finding the hinge orientations gives:

ĥ6 ¼ ĥ6 0ð Þ⋅ĥ1

� �
ĥ1 þ ĥ6 0ð Þ− ĥ6 0ð Þ⋅ĥ1

� �
ĥ1

� �
cos θ61 þ ĥ6 0ð Þ � ĥ1sin θ61

ĥ3 ¼ ĥ3 0ð Þ⋅ĥ2

� �
ĥ2 þ ĥ3 0ð Þ− ĥ3 0ð Þ⋅ĥ2

� �
ĥ2

� �
cos θ12 þ ĥ3 0ð Þ � ĥ2sin θ12:

ð16Þ

Assume that the bar connecting hinges 1 and 2 is fixed in space (i.e., the plane of symmetry moves). Since the position of hinge
6 is being rotated about ĥ1, it is possible to use Eq. (16) to decompose h6 using:

a6 ¼ ðĥ6ð0Þ⋅ĥ1Þĥ1

b6 ¼ ðĥ6ð0Þ−ðĥ6ð0Þ⋅ĥ1Þĥ1Þ
c6 ¼ ĥ6 0ð Þ � ĥ1

and thus

ĥ 6 ¼ a6 þ b6 cos θ61 þ c6 sin θ61
ĥ3 ¼ a3 þ b3 cos θ12 þ c3 sin θ12:
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The positions of the hinges can also be parameterised as:

q6 ¼ ðu1⋅ĥ1Þĥ1 þ p1 0ð Þ
r6 ¼ ðu1−ðu1⋅ĥ1Þĥ1Þ
s6 ¼ u1 � ĥ1

leading to:

p6 ¼ q6 þ r6 cos θ61 þ s6 sin θ61
p3 ¼ q3 þ r3 cos θ12 þ s3 sin θ12:

Substituting these forms into Eq. (12), and collecting trigonometric terms leads to:

η0 þ η1 cos θ12 þ η2 sin θ12 þ η3 sin θ12 cos θ12 þ η4 cos
2θ12 þ η5 sin

2θ12 ¼ 0 ð17Þ

where ηi can be expressed explicitly in terms of θ61 as well as a6, b6 … q6, r6 …. The process can just as easily be reversed to write
Eq. (17) in terms of θ61 with a6, b6 … q6, r6 … found by choosing a value of θ12. It can be shown that in fact:

η3 ¼ 0
η4 ¼ η5:

If a new definition is made for the trigonometric terms:

sin θ12 ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p ð18Þ

then it can be shown that:

l ¼
η1η2 � η0 þ η4


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η21 þ η22− η0 þ η4


 �2q
η0−η2 þ η4

 �

η0 þ η2 þ η4

 � :

Eq. (18) can be used to find the positions and orientations of hinges 6 and 3. Using this information, it is possible to reflect in
the plane defined by hinges 6 and 3 to find the positions and orientations of hinges 5 and 4. Hinge angles θ56 and θ23 can be found
easily in terms of the angles between the plane of symmetry and the bars connecting hinges 1 and 6, and 2 and 3. An example of
how the hinge angles θ61 and 0a12 vary with respect to one-another during unfolding is given in Fig. 9.

0 /4 /2 3 /4
0

/4

/2

3 /4

5 /4

3 /2

61

Max. 61 angle

Max. 12 angle Fully stowed configuration

Fully deployed configuration

12

Fig. 9. Angle evolution during the deployment of a linkage with parameters α1=π/4, α2=−π/4 and γ=π/2, derived from Eq. (18).
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8. Using a polyhedral homotopy to design six-bar linkages

Having now attained an expression for the compatibility equation in terms of α1, α2 and γ, Eq. (12) can be written as a pure
polynomial in terms of variables replacing the set of sines and cosines Cα1 ; Sα1 ;Cα2 ; Sα2 ;Cγ ; Sγ

� �
. The polynomial itself is quite

long, and in its fully expanded form consists of 389 distinct terms, prohibiting any manual manipulation, and making its explicit
representation difficult. The equation can be formed as a black-box function, with inputs x ¼ Cα1 ; Sα1 ;Cα2 ; Sα2 ;Cγ ; Sγ

� �
, and extra

parameters {θ61,θ12,l}. The compatibility equation can be written as:

Φ x; θ61; θ12; lð Þ ¼ 0:

If the function evaluates to zero, then the equation is satisfied and the inputs define a compatible linkage configuration.
The compatibility equation for the plane symmetric rectangular 6-bar linkage was derived in terms of three variables, α1,

α2 and γ. All three are angles, and are considered to be the only design variables for the linkage for the purposes of this
section.

Due to Eq. (1), it is implicit that the linkage will start as a rectangular structure with length twice its width, and then fold into a
compact configuration in which all the bars are parallel. This is arguably the most desirable characteristic of the linkage should
one intend to use it as a deployable structure. It is possible, however, that one might like to control the way in which the linkage
opens and folds. This might be desirable in order to minimise the stretch on a flexible sheet attached to the linkage, or perhaps to
confine the dimensions of the linkage to a particular three dimensional envelope during its opening. The complexity of the
equations involved in describing the motion of the linkage means that only numerical optimisation techniques lend themselves to
any attempt to modify the linkage's parameters of motion. It is also possible, however, to ‘guide’ the linkage on its way from
deployed to folded and vice versa by defining intermediate configurations through which it must pass. Since the linkage has only
a single degree of freedom, the specification of the angle between any two adjacent bars is sufficient to completely describe the
state of the linkage. It is not possible, in general, to specify a continuous relationship between any two hinge angles as this
over-determines the system. It is possible to specify the values of more than one hinge angle in the linkage during the opening
and closing process at a discrete number of positions. For each of these discrete positions, one of the design variables must be freed
up in order to keep the system determined. Since there are only three design variables, a maximum of three discrete positions
may be specified on the linkage's path.

An appropriate way to specify positions along the opening and closing path is to use the hinge angles θ61 and θ12 in
matched pairs {θ61j,θ12j} for j=1, 2, 3 to establish a set of angular waypoints (or precision points) through which the linkage
must pass. Note that it is not possible to specify the order in which the waypoints are encountered during an opening/closing
run. It is also not possible to determine whether the linkage will self-intersect during opening/closing. This can only be
investigated using simulation.

In choosing to consider the sines and cosines of the variables instead of the variables themselves, it has become necessary to
introduce a set of equations to compensate for the increase in the number of polynomial variables, as was done in Eq. (11). This
can be achieved in a number of ways, but a simple way is given in Eq. (19), preserving polynomial form.

C2
α1

þ S2α1
−1 ¼ 0

C2
α2

þ S2α2
−1 ¼ 0

C2
γ þ S2γ−1 ¼ 0

ð19Þ

Design problems can now be solved using the compatibility equation. The particular type of problem considered here involves
using pre-specified parameter sets θ61i ; θ12i

� �
and then solving for a Cα1 ; Sα1 ;Cα2 ; Sα2 ;Cγ ; Sγ

� �
set which satisfies the equations.

The full equation set is given in Eq. (20).

F ¼

Φ x; θ611; θ121; l

 �

Φ x; θ612; θ122; l

 �

Φ x; θ613; θ123; l

 �

C2
α1

þ S2α1
−1

C2
α2

þ S2α2
−1

C2
γ þ S2γ−1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ 0: ð20Þ

Eq. (20) is all that is required to form a polyhedral homotopy of the type described [22], p. 138. It is a system of polynomial
equations in six variables. Each of the first three equations of Eq. (20) contains the same set of 389monomials, whichmeans they have
an identical support (polynomial structure)with 389 elements. It is possible to useMathematica [17] to analyse the full equations and
arrange the supports into matrix form. The mixed volume of the supports is 2352, meaning that the system has at most this many
solutions. It isworth noting that if the variables are placed into homogeneous groups Cα1 ; Sα1

� �
; Cα2 ; Sα2

� �
; Cγ ; Sγ
� �� 

, the systemhas
a Bézout number [25] of 2400. The proximity of the Bézout number and themixed volume is due to the breadth ofmonomials present
in the first three equations of the target system. It was found that the polyhedral homotopy method exhibited greater numerical
stability than those using multi-homogenisation in this case, and hence this is the method used here.
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Table 1
Angle paths for triple waypoint examples. Each curve in each example represents a different linkage design. The θ pair waypoints are marked with circles. Note
that the combination of α61 and α12 for which a linkage is said to be stowed will be different for each design. One particular design from each example has been
chosen and represented at a variety of positions during the folding process, and its design parameters (α1, α2 and γ) listed (the other designs' parameters have
been omitted for brevity). The corresponding curve has been marked at the various deployment stages using solid circles.

(continued on next page)
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Since the system of equations in Eq. (20) contains more than one equation with the same structure; that is, equations with the
same polynomial structure but different coefficients, it is possible to use special polyhedral methods to simplify the process of
constructing a start system for solving the target problem. The system is said to have a semi-mixed support. The first three
equations, representing the compatibility equation but with different coefficients, is treated as a single equation, but with

Table 1 (continued)
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multiplicity three. The convex hull of the support of the first three equations (Q1) contains only 102 elements; a significant
reduction on 389. It is these 102 which are dealt with directly when forming the polyhedral homotopy. In the notation of [26], the
target equations of 20 have n=6 with r=4: k1=3, k2=1, k3=1, k4=1. That is to say, the system is written in terms of six
unknowns, and there are six equations, but the first three have the same polynomial structure, leaving four distinct polynomial
types. Also, dim(Q1)=m1=102, dim(Q2)=m2=3, dim(Q3)=m3=3 and dim(Q4)=m4=3.

Using continuation to follow the 2352 start solutions from the binomial start system to the random coefficient version of the
target system, results in a full complement of non-singular finite solutions to track to the real coefficient system. This second
continuation process, in which the solutions to the random complex coefficient system are tracked to those of the real coefficient
target system, leaves only ~500 non-singular finite solutions. These are the solutions of key interest.

8.1. Examples of solution runs

Some examples for essentially randomly chosen waypoints are given in Table 1. In each of the continuation runs, the number
of non-singular finite solutions was in the region of 500. What is of interest is howmany of those solutions are real. The number of
real solutions is given, along with the number of these which were found to be geometrically meaningful and distinct.

In the first example, only one solution progresses smoothly from deployed to stowed (this is common), and in this case it has
the design parameters:

α1 ¼ −π=4
α2 ¼ π=4
γ ¼ −π=2:

This result is not particularly surprising as the waypoints were taken from a simulation of a linkage with these design
variables. The second and third examples show similar results, with the number of potential solutions found varying. The results
for the waypoints specified in Table 1, Example # 4 show no practically desirable solutions. This example differs from the others in
that the search was for a set of hinge angles not monotonically increasing in θ12 with respect to θ61. It is possible that no smooth
solutions can be found for such a case.

It is important to remember that the theory of polynomial continuation guarantees that all solutions satisfying the waypoint
constraints will be found. The solution sets given here for these particular examples can be said with confidence to be complete.

9. Conclusion

The mobility of the plane symmetric 6R foldable ring over-constrained mechanism has been shown to manifest itself in the
linkage's closure equations as a single irreducible component in the one-dimensional solution set. A set of ‘feasibility maps’
showing the regions in parameter space in which the 6R foldable ring exhibits desirable characteristics has been produced. Also, a
method of designing such rings by specifying angular waypoints has been demonstrated. It is hoped that these techniques,
together, will provide a useful and practical way of designing plane symmetric, 6R foldable rings.
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