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Abstract

A simple derivation of the tangent stiffness matrix for a prestressed pin-jointed structure is
given, and is used to compare the diverse formulations that can be found in the literature
for finding the structural response of prestressed structures.

1 Introduction

This paper gives a simple derivation of the tangent stiffness matrix for a prestressed pin-
jointed structure: the stiffness is found by differentiating equilibrium expressions at nodes
of the structure with respect to the position of the nodes. It uses this derivation to compare
the diverse formulations that are applied to understanding the mechanics of prestressed
structures by different academic communities.

Two basic approaches to understanding the mechanics of pin-jointed structures are
common. In the computational mechanics approach, the results of computations are used
to gain insight into structural response. In this context, it is sensible to use an exact tangent
stiffness matrix, as described by e.g. Argyris and Scharpf (1972). Another approach is to
gain understanding through the basic formulation of the problem: an exact formulation is
less important, and it may prove sensible to use a simplified set of equations. This paper
shows the links between various such formulations by describing the exact tangent stiffness
matrix using equilibrium and stress matrices, each of which has been used individually to
gain understanding of structural response in different circumstances.

Using the equilibrium matrix to understand structural response is described in e.g.
Pellegrino and Calladine (1986), or Pellegrino (1993). A basic assumption is that the key
structural action comes through the deformation of members — a common assumption
in structural engineering. Study of the equilibrium matrix (or equivalently its transpose,
the compatibility matrix) enables small movements of the structure to be decomposed
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into movements that cause deformation of members, and mechanisms that to a first order
approximation cause no deformation of members. It is also possible to find various states

of self-stress, where the structure is stressed even under zero external load. The fact that a
structure has a mechanism (by the definition given here) does not imply that this motion
has no stiffness as long as the structure is stressed, and Pellegrino (1990) and Calladine
and Pellegrino (1991) further describe a method where this stiffness may be found using
product forces. This paper will show that in fact this extension corresponds to a reduced
form of the stress matrix, described next.

The stress matrix is widely used in the mathematical rigidity theory literature, see
e.g. Connelly and Terrell (1995) or Connelly and Back (1998). Here, the basic structural
action is assumed to come about through the reorientation of stressed bars. The aim of this
work is not conventional modelling of structures, but answering questions such as when a
particular set of links implies a unique configuration of nodes. Of particular relevance here
is that the stress matrix is used to understand whether unconventional structures such as
tensegrities are ‘prestress stable’ (Connelly and Whiteley, 1996).

This paper will show that to find structural stiffness, the equilibrium matrix, and the
stress matrix, are usefully complementary. When combined with the definition in this
paper of a ‘modified axial stiffness’ for a prestressed bar, the equilibrium matrix and the
stress matrix together can be used to give the correct tangent stiffness matrix, without
sacrificing the useful insight that the simplified methods give.

The paper is structured as follows. This introduction will conclude by introducing an
example structure. Section 2 will describe the formulation itself, and this will be compared
with earlier work in Section 3. The example structure will be analysed in Section 4, and
Section 5 will conclude the paper.

1.1 Introduction to the example structure

The structure shown in Figure 1 will be used as an example. Considered in 2D, with
out-of-plane motion restricted, the structure has no mechanisms: conventional structural
action renders it stiff. Considered in 3D, however, there is a mechanism in which the
completely unrestrained joint moves out of plane. The structure can sustain a state of
self-stress, with the two cross-bars in compression and the outer bars in tension, or vice
versa, and the tangent stiffness matrix will be used to clarify if the state of self-stress will
stiffen the out-of-plane mechanism.

2 Tangent stiffness formulation

This section introduces a new derivation for the tangent stiffness, found by initially writing
down the equations of equilibrium for the external forces at each of the nodes of the
structure, and then differentiating these forces with respect to movement of the nodes.
For simplicity, the tangent stiffness will first be found for a single bar, before a general
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Figure 1: A simple example structure, analysed in Section 4. It consists of four joints,
numbered 1 to 4, all of which lie in the 1-2 plane. Joint 1 is fully restrained, joint 2 is
allowed to move only in the 1-direction, joint 3 is retrained to lie in the 1-2 plane, and
joint 4 is completely free. The joints are connected by six bars; the two crossing bars are
not connected.

pin-jointed structure is considered. The derivation will equally apply in two or three
dimensions.

2.1 A single bar

Figure 2 shows a single bar floating in space. Forces f1 and f2 are in equilibrium with
an internal tension in the bar t, where f1 and f2 are two- or three-dimensional vectors as
appropriate, with components f1i and f2i respectively. The nodes of the bar have position
vectors, x1 and x2, relative to some reference, with components x1i and x2i respectively.

f1

f2

node 1 (x1)

node 2 (x2)

n

Figure 2: A single bar connecting two nodes, at positions x1 and x2; a unit vector along
the bar from x2 to x1 is given by n.
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The bar is currently of length l, and a unit vector n = (x1 − x2)/l is parallel to the bar.
Equilibrium at nodes 1 and 2 can be written in terms of the bar tension, t, in either

vector, or component form,

f1 = n t ; f1i = ni t (1)

f2 = −n t ; f2i = −ni t. (2)

Alternatively, the equilibrium equations can be written using the tension coefficient in the
bar, t̂ = t/l.

f1 = (x1 − x2)t̂ ; f1i = (x1i − x2i)t̂ (3)

f2 = (−x1 + x2)t̂ ; f2i = (−x1i + x2i)t̂. (4)

In order to find the tangent stiffness, differentiating the component equilibrium expres-
sions in (3) and (4) with respect to the j-coordinate of node 1 gives

∂f1i

∂x1j

= (x1i − x2i)
∂t̂

∂x1j

+ δij t̂ (5)

∂f2i

∂x1j

= (−x1i + x2i)
∂t̂

∂x1j

− δij t̂ (6)

where δij = 1 if i = j, δij = 0 if i 6= j. Similarly differentiating with respect to the
j-coordinate of node 2 gives

∂f1i

∂x2j

= (x1i − x2i)
∂t̂

∂x2j

− δij t̂ (7)

∂f2i

∂x2j

= (−x1i + x2i)
∂t̂

∂x2j

+ δij t̂. (8)

To simplify the stiffness expressions (5)–(8) requires further expansion of the rate of
change of the tension coefficient with position of the nodes. A basic assumption for pin-
jointed bars if that the tension in a particular bar varies only with the extension, or
equivalently the length, of that bar. It is thus sensible to write

∂t̂

∂x1j

=
dt̂

dl

∂l

∂x1j

;
∂t̂

∂x2j

=
dt̂

dl

∂l

∂x2j

(9)

where trigonometry shows that

∂l

∂x1j

= nj ;
∂l

∂x2j

= −nj, (10)

and hence
∂t̂

∂x1j

=
dt̂

dl
nj ;

∂t̂

∂x2j

= −dt̂

dl
nj. (11)
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The rate of change of tension coefficient with length, dt̂/dl, can be written as

dt̂

dl
=

d(t/l)

dl
=

1

l

dt

dl
− t

l2

=
1

l

(

dt

dl
− t̂

)

. (12)

The rate of change of tension with respect to length of the bar, dt/dl, is simply the axial
stiffness. For small strains of a linear-elastic bar with cross-sectional area A, Young’s
modulus E, and initial length l0, dt/dl = AE/l0. However, we will only assume that
the tension is differentiable, although this does imply that we are dealing with an elastic
system, and don’t have a cable at its rest-length. Within this assumption, to maintain
generality, we will define the axial stiffness, dt/dl, as g, a bar parameter that may vary
with bar length, giving

dt̂

dl
=

g − t̂

l
(13)

To simplify notation further, define a modified axial stiffness, ĝ = g − t̂, giving

dt̂

dl
=

ĝ

l
(14)

Substituting (14) into (11) gives

∂t̂

∂x1j

=
ĝnj

l
;

∂t̂

∂x2j

= − ĝnj

l
(15)

and hence the stiffness equations (5)–(8) can be written, noting that (x1i − x2i)/l = ni, as

∂f1i

∂x1j

= ni ĝ nj + δij t̂ ;
∂f1i

∂x2j

= −ni ĝ nj − δij t̂ (16)

∂f2i

∂x1j

= −ni ĝ nj − δij t̂ ;
∂f2i

∂x2j

= ni ĝ nj + δij t̂ (17)

or, in vector form

∂f1
∂x1

= n ĝ nT + t̂ I ;
∂f1
∂x2

= −n ĝ nT − t̂ I (18)

∂f2
∂x1

= −n ĝ nT − t̂ I ;
∂f2
∂x2

= n ĝ nT + t̂ I. (19)

Thus, for a single bar, the tangent stiffness matrix, Ks, relating small changes in nodal
position to small changes in nodal forces,

[

δf1
δf2

]

= Ks

[

δx1

δx2

]

(20)
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is given by

Ks =

[

n
−n

]

[

ĝ
] [

nT −nT
]

+

[

t̂I −t̂I
−t̂I t̂I

]

(21)

which can be written as
Ks = as

[

ĝ
]

aT

s + Ss (22)

where as is the equilibrium matrix for a single bar,

as =

[

n
−n

]

(23)

relating bar tension and nodal force,

as

[

t
]

=

[

f1
f2

]

(24)

and Ss is the stress matrix for a single bar,

Ss =

[

t̂I −t̂I
−t̂I t̂I

]

. (25)

2.2 Complete structure

We can find the tangent stiffness matrix for an entire structure simply by adding together
the tangent stiffness matrices for individual bars. To do this the tangent stiffness matrices
for individual bars must first be embedded in a larger coordinate system for the entire
structure.

Consider a structure consisting of n nodes. Define a vector of nodal forces f and a
vector of nodal coordinates x, where

f =











f1
f2
...
fn











; x =











x1

x2

...
xn











(26)

and fi is the two- or three-dimensional force vector at node i, and xi is the two- or three-
dimensional position vector of node i.

Consider a bar p connecting nodes i and j with current length lp, carrying a tension tp,
a tension coefficient t̂p, and having a modified axial stiffness ĝp. Define a unit vector nij

along bar p,

nij =
xi − xj

lp
= −nji (27)

The equilibrium matrix for this bar in the global coordinate system, ap, is defined so
that the nodal forces fp in equilibrium with a tension tp in bar p are given by

ap

[

tp
]

= fp, (28)
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and hence has all components zero, apart from those corresponding to the nodes at the
end of the bar, i and j,

ap =











ap1

ap2

...
apn











; api = nij ; apj = nji = −nij ; apk = 0 if k 6= i and k 6= j. (29)

The stress matrix for the single bar p joining nodes i and j, in a global coordinate
system, can be defined in terms of 2 by 2 (in 2D) or 3 by 3 (in 3D) submatrices splm

,

Sp =











sp11
sp12

· · · sp1n

sp21
sp22

...
. . .

spn1
spnn











(30)

where
spii

= spjj
= t̂pI ; spij

= spji
= −t̂pI, (31)

and all other splm
= 0.

The tangent stiffness matrix for bar p, Kp, can be written by embedding (22) in the
global coordinate system,

Kp = ap

[

ĝp

]

aT

p + Sp. (32)

Consider a structure made up of b bars. The total tangent stiffness, K, can be found by
adding up the tangent stiffness due to each of the bars

K =
b

∑

p=1

Kp =
b

∑

p=1

ap

[

ĝp

]

aT

p +
b

∑

p=1

Sp (33)

which can be written as
K = AĜAT + S (34)

where A is the equilibrium matrix for the entire structure

A =
[

a1 a2 · · · ab

]

, (35)

Ĝ is a diagonal matrix of modified axial stiffnesses,

Ĝ =











ĝ1

ĝ2

. . .

ĝb











, (36)
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and S is the stress matrix for the entire structure. S can be defined in terms of component
(2 × 2) or (3 × 3) submatrices slm

S =











s11 s12 · · · s1n

s21 s22

...
. . .

sn1 snn











(37)

where, for l = m,
sll = t̂llI, (38)

and t̂ll is the sum of the tension coefficients of all the bars that meet at node l, and, for
l 6= m,

slm = −t̂lmI, (39)

where t̂lm is equal to the tension coefficient in the bar joining node i and j if the nodes are
connected by a bar, or is zero otherwise.

3 Comparison with other formulations

3.1 Conventional stiffness/geometric stiffness formulation

A conventional formulation of the tangent stiffness would describe the tangent stiffness as
consisting of two parts, a material stiffness, and a geometric stiffness. The material stiffness
corresponds to the stiffness when it is assumed that the overall geometry of the structure
does not change due to load, or alternatively that the structure is initially unstressed. The
geometric stiffness corresponds to the stiffness due to the reorientation of stressed members.
It is instructive to compare these terms with the new formulation. This can easily be done
by differentiating equilibrium expressions, as in Section 2. However, in contrast to the new
derivation in Section 2, we will work directly with tension in the bar as a variable, rather
than forming the tension coefficient.

Starting with the equilibrium expressions, (1) and (2), differentiating with respect to
the position of the nodes gives

∂f1i

∂x1j

= ni

∂t

∂x1j

+
∂ni

∂x1j

t ;
∂f1i

∂x2j

= ni

∂t

∂x2j

+
∂ni

∂x2j

t (40)

∂f2i

∂x1j

= −ni

∂t

∂x1j

− ∂ni

∂x1j

t ;
∂f2i

∂x2j

= −ni

∂t

∂x2j

− ∂ni

∂x2j

t (41)

The first term in each of the expressions, e.g. (ni ∂t/∂x1j), together make up the material
stiffness matrix. Following similar working to that in Section 2, it is possible to finally
write, for a single bar, the material stiffness matrix Ksm in the form,

Ksm = as

[

g
]

aT

s , (42)
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and for the complete structure the material stiffness matrix, Km, is given by,

Km = AGAT. (43)

The geometric stiffness matrix, Kg, can be derived from the difference between (43) and
(34),

Kg = −AT̂AT + S, (44)

where T̂ is the diagonal matrix of tension coefficients. Thus, part of the geometric stiffness
has exactly the same structure as the material stiffness matrix; the new formulation (34)
lumps these terms together.

For most conventional structures, it is reasonable to assume that the modified axial
stiffness for any bar ĝ, will be little different to the axial stiffness g. As a ‘worst case’,
consider a linear-elastic bar with axial stiffness AE/l that carries tension just less than
that required to cause yield. The tension will be given by AEεy, where εy is the yield
strain, and thus the modified axial stiffness is ĝ = g− t/l = (AE/l)(1− εy). Thus, for bars
where εy << 1, the modified axial stiffness will be little different from the conventional
axial stiffness, and certainly positive. This is not universally true, however. For instance
it is possible for wound springs to have zero modified axial stiffness, by ensuring that in an
initial, closely wound, state they carry a tension equivalent to having a zero rest length, a
principle used to advantage in Anglepoise lamps (French and Widden, 2000).

3.2 Equilibrium matrices and the product-force approach

Equation (43) can be considered as the decomposition of the material stiffness matrix into
compatibility, equilibrium, and bar-stiffness relationships. The equilibrium matrix and
the bar stiffness relationships have already been described. It is straightforward to show,
be e.g. a virtual work argument, that the transpose of the equilibrium matrix, AT, is the
compatibility matrix for the structure, also known as the rigidity matrix, relating extensions
of the bars to displacement of nodes. Consider a vector, e, of bar extensions, relative to
the current configuration,

e =











e1

e2

...
eb











=











δl1
δl2
...

δlb











(45)

and a vector d of nodal displacements

d = δx =











δx1

δx2

...
δxn











. (46)

e and d are related by
e = ATd (47)
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The nullspace of AT contains all mechanisms of the structure, nodal displacements cor-
responding to zero member extension. If the nullspace is m-dimensional, the mechanisms
can be described by a set of basis vectors, m1 . . .mm. If these mechanisms are written as
the columns of a matrix D,

D =
[

m1 m2 · · · mm

]

(48)

then a general mechanism m is given by

m = Db (49)

where b gives the coefficient of each of the basis mechanisms.
For any mechanism, the material stiffness matrix gives zero stiffness. The ‘material’

force developed as the mechanism is displaced is given by Kmm, where

Kmm = AGATm

= AGATDb

= 0 (50)

as ATD = 0. This result is also true if the modified axial stiffness is used, AĜATm = 0.
However, this does not imply that the stiffness of a mechanism is zero, and Calladine
and Pellegrino (1991) introduced a method to find this stiffness. The actual (linearized)
force developed as any mechanism is actuated is given, using the complete tangent stiffness
matrix (34), by

f = Km = KDb = AĜATDb + SDb

= SDb, (51)

and the (linearized) work done during the deformation is given by

W =
1

2
dTf

=
1

2
bTDTKDb

=
1

2
bTDTSDb. (52)

Calladine and Pellegrino (1991) described the matrix DTSD as a matrix Q; they commen-
ted that it was symmetric, which it clearly is from this derivation. It is natural to consider
Q as a reduced form of the stress matrix, where motion is restricted only to to inextensional
mechanisms of the structure. If Q is positive definite, there is positive stiffness for any
mechanism of the structure.

3.3 Rigidity Theory and Prestress Stability

Connelly and Whiteley (1996) clearly anticipate the results in this paper by showing that
a full account of structural stiffness comes from two sources, a first order rigidity that can
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Figure 3: Coordinate systems for the simple example structure. The bars are numbered
I–VI, and any allowed displacement of node i in direction j is denoted dij.

be written in terms of the rigidity matrix (the transpose of the equilibrium matrix), and
a term given by the stress matrix. However, the link with tangent stiffness formulations if
not immediately clear, largely because this work is not concerned with finding particular
numerical values, but rather with answering general questions about structural stability. A
further problem arises because of differences in notation, particularly as the rigidity theory
literature uses the term ‘stress’ for what is defined in this paper as a ‘tension coefficient’.

Equation (34) can be considered as a translation of the stiffness formulation given by
Connelly and Whiteley (1996) into more conventional engineering terms. The key point
is that the basic structure of the equations is the same, and this means that many of the
further powerful results in Connelly and Whiteley (1996), and related literature, can be
directly translated and understood in conventional engineering terms.

4 Example

This section will analyze in three dimensions the structure shown in Figure 1, using the new
formulation of the tangent stiffness matrix. Figure 3 shows the same structure, but with
a coordinate system added for possible nodal displacements, along with a bar numbering
scheme. We define forces f21 . . . f43 to be forces work equivalent to the displacements
d21 . . . d43 shown.

The equilibrium matrix for the structure relates external forces to bar tensions, At = f ,
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and is given by,
















1 0 0 0 0 1/
√

2

0 0 −1 0 0 −1/
√

2

0 0 0 1 0 1/
√

2

0 0 1 0 1/
√

2 0

0 1 0 0 1/
√

2 0
0 0 0 0 0 0

































tI
tII
tIII
tIV
tV
tVI

















=

















d21

d31

d32

d31

d32

d33

















(53)

Although the matrix is square, it is clearly rank-deficient, and the null-space gives the state
of self-stress in the system, t0, in terms of an arbitrary constant, the tension T in bar I,

t0 =

















T
T
T
T

−
√

2T

−
√

2T

















(54)

and hence, when the structure is unloaded, the tension coefficients in the bars are given by
















tI
tII
tIII
tIV
tV
tVI

















=
T

L

















1
1
1
1
−1
−1

















. (55)

Thus the modified axial stiffness matrix is given by

Ĝ =
AE

L

















1
1

1
1

1/
√

2

1/
√

2

















− T

L

















1
1

1
1

−1
−1

















(56)

The structure of the stress matrix is most clearly seen by first considering the stress
matrix of an identical structure that has been freed from its foundations, Sf . At each
node, the sum of the tension coefficients in the bars, t̂ii = (1 + 1− 1)T/L, which forms the
diagonal terms in Sf . The off-diagonal terms t̂ij are the negative of the tension coefficient
in the bar, and are hence +T/L for the diagonal bars, and −T/L for the others, giving

Sf =
T

L









I −I I −I
−I I −I I

I −I I −I
−I I −I I









(57)
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where I is a 3 × 3 identity matrix. The stress matrix for the actual restrained case can
be found by crossing out the rows and columns corresponding to restrained degrees of
freedom, leaving

S =
T

L

















1 −1 0 1 0 0
−1 1 0 −1 0 0

0 0 1 0 −1 0
1 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 0 0 1

















. (58)

Substituting the equilibrium matrix from (53), the matrix of modified axial stiffness
given in (56) and the stress matrix given in (58) into the complete tangent stiffness formu-

lation (34) gives the complete tangent stiffness matrix for the structure, K = AĜA
T

+ S.
The nullspace of the transposed equilibrium matrix for the structure describes the one

mechanism,

m =

















0
0
0
0
0
1

















(59)

And clearly for this mechanism, AĜA
T

m = 0 (as ATm = 0). Thus any stiffness must be
given by the stress matrix term, which gives the force (the product-force) as

f = Sm =
T

L

















0
0
0
0
0
1

















(60)

and indeed, the reduced (1× 1) stress matrix corresponding to this mechanism is given by

Sr = mTSm =
T

L
(61)

Thus the structure will have positive stiffness in all modes as long as T is positive, i.e. the
outer four bars are in tension, while the inner two bars are in compression.

5 Discussion

The tangent stiffness formulation presented in this paper is certainly not new. It first
appeared in Argyris and Scharpf (1972), and has been used in much work since; a recent
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equivalent but extended derivation in a large displacement, large strain, setting has been
given by Murakami (2001a), using the powerful tools of continuum mechanics. Although
the final formulation is not new, the present paper does give a new and simple derivation
of the tangent stiffness, and writes it in a form which allows comparison with other formu-
lations in the literature. A novel feature is the use of a modified axial stiffness, which for
conventional structures is little different from the conventional axial stiffness.

An important feature of this paper is that it links into the work in mathematical rigidity
theory. This line of research is often neglected in the engineering literature, despite the
powerful results that have been derived. This may partly be because of difficulties of
notation, as well as the different underlying aims of the work. This paper has shown that
in fact the stiffness formulation given e.g. by Connelly and Whiteley (1996) is directly
compatible with a standard tangent stiffness formulation.

The paper also shows the links between tangent stiffness of a prestressed structure, and
the product force method of Pellegrino and Calladine, a link that has also been made by
Murakami (2001b). Recently, Tarnai and Szabó (2002) have elucidated the link between
the product force method and the geometric formulations of Kuznetsov, (e.g. Kuznetsov,
1991): together with the results in this paper this gives further unification to seemingly
disparate methods.
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