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Abstract

The mobilities of many objects from toys and molecular models
to large scale deployable structures can be understood in terms of N -
loops: sets of N bodies, cyclically connected by pairs of intersecting
revolute hinges. A symmetry-extended version of the Grübler criterion
for counting kinematic degrees of freedom is used to explain and ra-
tionalise the observed mobilities of N -loops with small N . Compared
to simple counting, the symmetry based approach gives improved de-
tection and visualisation of mechanisms and states of self-stress. It
can also give a better account of the differing mobilities of conformers
occupying different regions of the phase-space, such as the rigid chair
and flexible boat forms of cyclohexane.

1 Introduction

Mobility counting and rigidity theory provide concepts that are used and
re-used in contexts from conformational analysis of small molecules (Dunitz
and Waser, 1972), mechanics of protein structures (Jacobs et al., 2001), mod-
elling of pH-dependent expansion of nano-scale viral particles (Kovács et al.,
2004), through robotics (Porta et al., 2009), to generation of designs for de-
ployable engineering structures (Chen et al., 2005). Many systems at these
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Figure 1: (a) Tangle model of the 6-loop in the twist-boat conformation; (b)
line drawing showing bodies, hinges and intersecting hinge-lines. The angle
of intersection is θ = 90◦.

different length scales can be described as cycles of bodies linked by inter-
secting revolute hinges. The present paper is concerned with the mobility of
such cycles, and in particular, with the kinematic insights that can be gained
by exploiting symmetry.

We define an N -loop as consisting of N rigid bodies, linked in a cycle
by joints, such that each joint is a revolute hinge allowing torsional freedom
about a line, and such that the two hinge lines for each body intersect. All
distances between neighbouring intersections, and all angles of intersection
are allowed, and indeed much of our treatment will be applicable to this
general situation. However, in applications, the configurations of interest
are usually regular N(θ)-loops, in which all distances between neighbouring
intersections are equal, and all intersection angles are equal to some angle θ
(which is taken to be greater than or equal to π/2).

The ‘Tangle’ toy (http://www.tanglecreations.com) provides a simple
means of building tangible realisations of N -loops with θ = 90◦ that allow
exploration of their mobility properties. Figure 1 shows one conformation of
a 6-loop constructed from Tangle pieces, together with an analysis in terms
of the bodies, hinges and hinge-lines of the N -loop description.

The interesting properties of Tangles have been used as the basis for ed-
ucational workshops in mathematics (Freudenthal, 2003). Constructing and
handling Tangle models (Figure 2) leads to a number of immediate observa-
tions:

N = 4 As θ = 90◦, a 4-loop can be constructed in a planar conformation
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(Figure 2(a)), but the physical model allows small out-of-plane defor-
mations without apparent distortion of the components.

N = 5 It proves to be impossible to assemble a regular 5-loop with θ = 90◦.
It is easy to show by a geometrical argument (Freudenthal, 2003) that
is is not possible to close a chain of five 90◦ ‘elbows’ and simultaneously
align the hinges.

N = 6 There are two ways in which a 6-loop can be constructed from Tangle
pieces. One leads to a rigid conformation (Figure 2(b.i)). The other
leads to a family of non-rigid conformations lying on a one-parameter
pathway. The two high-symmetry conformations are shown in Fig-
ures 2(b.ii,iii). To convert from the rigid to a non-rigid conformation
of the Tangle model requires dismantling and re-assembly. The three
illustrated models are θ = 90◦ equivalents of the three well-known con-
formations of cyclohexane (see below).

N = 7 There are also two ways in which a 7-loop can be constructed from
Tangle pieces, but now both lead to one-parameter families of non-rigid
conformations, and passage from one family to the other is possible only
by dismantling and re-assembly. Figures 2(c.i,ii) show high-symmetry
points on the path connecting chair-like conformations, whilst Fig-
ures 2(c.iii,iv) show high symmetry points on the path connecting boat-
like conformations. The four illustrated models again have their equiv-
alents in molecular conformations (of cycloheptane) (Crippen, 1992;
Graveron-Demilly, 1977).

N = 8 Figure 2(d) shows three conformations of a Tangle model of an 8-
loop. All are interconvertible, in what is clearly a multi-parameter
family. Porta et al. (2007) show that for cyclooctane (an 8-loop with
θ equal to the tetrahedral angle, θT = cos−1(−1/3) ≈ 109◦28′), all
conformations form a single interconnected family.

N > 8 Some examples of loops with larger N are discussed in Freudenthal
(2003).

The ‘Dreiding’ models (Dreiding, 1959), used in chemistry to study con-
formations and flexibility of cycloalkenes and related molecules, are also phys-
ical realisations of N -loops. The atom components linked by peg-and-socket
joints are rigid bodies linked by torsional revolute hinges; these bodies are
free to rotate around the linking bond. For a given hybridisation of the
carbon atom, the angle of intersection of the hinges is fixed, i.e., θ = θT

for sp3 (where a saturated carbon centre participates in four single bonds),
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Figure 2: Conformations of Tangle models of N -loops, with N = 4, 6, 7, 8.
Here θ = 90◦ for all links.
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θ = 2π/3 for sp2 (where an unsaturated carbon centre participates in bonds
to three neighbours). Figure 3 illustrates the use of Dreiding models for the
well studied case of the cyclohexane ring (Eliel, 1962), where the models are
6-loops with θ = θT . The figure shows the three conformations identified
in chemical nomenclature as chair, boat and twist-boat. The chair model,
representing the low-energy molecular conformer, is rigid, whereas the boat
and twist-boat models can be interconverted by rotation of hinges, following
a one-parameter continuous path. (See, for example, Baker (1986), and the
complete map of the conformation space given in a recent computational
study, Porta et al. (2007).) Unlike the stiffer Tangle model, the chair Dreid-
ing model can be ‘snapped through’ to the boat form by deformation of the
components.

Even simpler models of N -loops are possible. Goldberg (1978) gives a
net from which a paper model of Bricard’s (1897) flexible octahedron can be
made, and as we show in Figure 4, this generates a corresponding non-regular
6-loop.

The concept of mobility is central to the analysis of the kinematic prop-
erties of all these models. The mobility criterion associated with the classic
work of Kutzbach and Grübler (Hunt, 1978), is usually interpreted as a count-
ing rule that quantifies the kinematic degrees of freedom of a system, and, in
favourable cases, reveals the existence of mechanisms (freedoms) or states of
self-stress (overconstraints). However, counting alone cannot distinguish, for
example, between the rigid chair and non-rigid boat forms of the 6-loop. A
key difference between the chair and boat forms is their point-group symme-
try, and it turns out that symmetry considerations explain the difference in
mobility. In the present paper, we cast the general symmetry-extended mo-
bility criterion (Guest and Fowler, 2005) in a form suitable for the analysis of
the kinematics of the N -loop, and use this to examine generically symmetric
configurations for different values of N , strengthening the counting results,
and rationalising the observed mobility in many cases.

2 Preliminary counting analysis

As a simple generic counting relationship for calculating the degrees of free-
dom of a mechanical linkage, the mobility criterion is a familiar concept in
mechanism theory. In Hunt’s (1978) formulation, as extended by the present
authors (Guest and Fowler, 2005), a mechanical linkage consisting of n bodies
connected by g joints, where joint i permits fi relative freedoms, has relative
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Figure 3: Dreiding models of the cyclohexane ring in: (a) chair; (b) boat;
and (c) twist-boat conformations.
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Figure 4: Flexibility of the Bricard octahedron. (a) Flattened form (after
Goldberg, 1978) in which the intersecting faces BDF and ACE have been
removed, thus allowing the rest of the structure to flex. (b) An equivalent
planar non-regular 6-loop.

mobility:

m− s = 6(n− 1)− 6g +

g∑
i=1

fi (1)

where m−s is the difference between the mobility, or number of mechanisms,
m, and the number of independent states of self-stress, s. This equation
counts the degrees of freedom by taking the difference between the relative
body freedoms, of which there are 6(n− 1), and the constraints imposed by
the joints, of which there are

∑g
i=1(6− fi).

For a loop of N components, the numbers of bodies and joints are equal,
n = g = N , and each revolute hinge allows a single relative freedom, fi = 1
for all i. Therefore,

m− s = 6(N − 1)− 6N + N = N − 6, (2)

and the N -loop is guaranteed to have m > 0 mechanisms for all N > 6. For
N = 4, the N -loop has at least two states of self-stress, and for N = 5 has at
least one. For N = 6, the loop has equal numbers of mechanisms and states
of self-stress, m− s = 0. For N > 6, each mechanism beyond the minimum
count of N − 6 necessarily implies a corresponding extra state of self-stress.

Clearly, from the observations described in the introduction, this simple
counting exercise has not captured all aspects of the mobility of an N -loop.
For example, the 4-loop has in fact infinitesimal mobility, m = 1. The 6-loop
has two forms, both with m − s = 0, but one is rigid (m = s = 0) and the
other has finite mobility (m = s = 1). To gain further insight, we need a
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symmetry-extended mobility criterion for N -loops that compares not only
total numbers, but also symmetries, of the mechanisms and the states of
self-stress.

3 A symmetry-extended mobility analysis

The extended mobility criterion (Guest and Fowler, 2005) relates the rep-
resentations of the mechanisms and states of self-stress to those of various
features of the structure. A representation Γ(object) describes the symmetry
of a set of objects (which may be joints, bars, vectors or other local structural
or dynamical motifs) in the relevant point group of the structure. Γ(object)
collects the characters χ(S) of sets of objects, i.e., for each symmetry oper-
ation S, χ(S) is the trace of the matrix that relates the set before and after
the application of S. For further details, see Bishop (1973).

In the language of representations, the extended mobility criterion for a
collection of bodies can be written (Guest and Fowler, 2005)

Γ(m)− Γ(s) = Γ(relative body freedoms)− Γ(hinge constraints) (3)

where Γ(m) and Γ(s) are respectively the representations of the mobility,
and the states of self-stress. The relative body freedoms are the freedoms of
all the bodies of the mechanical linkage, in the absence of connections, and
taken relative to one body considered as a reference. The hinge constraints
are those constraints imposed by hypothetical rigid joints, minus the actual
freedoms at the joints. A rigid joint removes six freedoms, i.e., three relative
rotations and three relative translations. In the present case, all joints are
revolute hinges, each of which restores one relative rotational freedom about
the line of the hinge joining a pair of bodies.

An alternative way of formulating the extended mobility criterion is to
consider the relative mobility of the structure where all joints are fixed and
rigid body motions are prevented, which we will call Γfix. To obtain Γ(m)−
Γ(s) we then restore the various hinge freedoms spanning Γ(hinge freedoms) ≡
Γf , and write

Γ(m)− Γ(s) = Γfix + Γf . (4)

For a structure with all joints fixed, there can be no mechanisms, Γ(m) = 0,
and it is apparent that Γfix is the negative of the representation of the states
of self-stress of a completely rigid structure that has the same topology as
the original linkage.

In describing the mobility of a general mechanical linkage, it is useful to
define the linkage topology through what is often loosely called the contact
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polyhedron C, a graph embedded in 3D space that has ‘vertices’ at bodies, and
‘edges’ through joints. The point group or this embedded graph is G(C). (In
fact, in the case of the N -loop, C reduces to a (non-planar) contact polygon,
as each body is joined to exactly two others.) In terms of the properties of
C, the symmetry-extended mobility rule of the general mechanical linkage is
(Guest and Fowler, 2005)

Γ(m)− Γ(s) = (Γσ(v, C)− Γ‖(e, C)− Γ0)× (ΓT + ΓR) + Γf , (5)

where Γσ(v, C) is the permutation representation of the vertices of C (a
permutation representation of a set has character χ(S) equal to the number
of elements of the set left in place by the operation S), and where Γ‖(e, C) is
the representation of a set of vectors along the edges of C. Γ0 is the totally
symmetric representation, with χ0(S) = 1 for all S, and ΓT and ΓR are the
representations of rigid-body translations and rotations respectively. Γ0, ΓT

and ΓR can be read off from standard point-group theory tables, e.g., Atkins
et al. (1970), Altmann and Herzig (1994).

Substituting the formulation (4) in (5), we see that, for the general N -
loop, Γfix is the 6-dimensional representation

Γfix = (Γσ(v, C)− Γ‖(e, C)− Γ0)× (ΓT + ΓR). (6)

This expression can be simplified, as we will see below.
The other term in this approach to the calculation of mobility, Γf , which

describes the set of hinge freedoms, is also associated with a structural rep-
resentation of the contact polyhedron. The freedom of a revolute hinge, the
axis of which is parallel to an edge of the contact polyhedron, is described in
group-theoretical terms by Guest and Fowler (2005). Such a freedom has the
nature of a local pseudo-scalar: if an operation S leaves a particular hinge
unshifted, then the contribution to the overall character for the set of hinges
is +1 for proper, and −1 for improper, operations S. Therefore, for the set
of revolute hinges in an N -loop is

Γf = Γσ(e, C)× Γε, (7)

where Γσ(e, C) is the permutation representation of the edges of C, and Γε

is the representation of a central pseudo-scalar, having character χ(S) = +1
for proper, and −1 for improper S.

Substituting (7) into (5) gives a specific form of the mobility criterion
applicable to an N -loop, the loop equation:

Γ(m)− Γ(s) = (Γσ(v, C)− Γ‖(e, C)− Γ0)× (ΓT + ΓR) + Γσ(e, C)× Γε (8)
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This equation too can be greatly simplified by taking into account the prop-
erties of the different representations associated with C, as we will see below.
It is convenient to split the discussion of Γfix (Section 3.1) and Γf (Sec-
tion 3.2) before producing unified expressions for the mobility of the N -loop
(Section 3.3).

3.1 States of self-stress in a ring structure

The highest point group symmetry G(C) achievable by an N(θ)-loop is DNh

(for the planar structure that exists when θ = 2π/N). Any other conforma-
tion belongs to a subgroup of DNh, and results obtained in the higher group
can be specialised to particular conformations using descent in symmetry or
inspection of characters.

We use the standard DNh setting with the z-direction along the principal
rotational axis. It is useful to present the odd N = 2p + 1 and even N = 2p
(both with p > 0) cases separately before writing the fully general formula.

3.1.1 N odd

For odd cycles, the edge and vertex representations are equal

(N odd): Γσ(e, C) = Γσ(v, C) (9)

and, independently of the parity of N , the representation of a set of vectors
along the edges of the cycle is

Γ‖(e, C) = Γ(Rz)× Γσ(e, C) (10)

where Γ(Rz) is the representation of the rotation about the principal axis.
The form of Equation 6 conceals a high degree of cancellation, which

can be removed by considering an angular-momentum type expansion of the
two vertex-related terms. In general, the odd cycle has contributions to
Γσ(v, C) from complete sets with axial angular momentum components 0 to
p = (N − 1)/2.

(N odd): Γσ(v, C) = Γσ(e, C) = Γ0 +

p∑
L=1

ΓL = A′
1 +

p∑
L=1

E ′
L. (11)

where Γ0 is the symmetry of the nodeless in-phase combination of all ver-
tices and the notation ΓL stands for the representation of the two independent
combinations of vertices (or edges) with L angular nodal planes (correspond-
ing to the set of two degenerate functions with components ±L of angular
momentum about the principal axis).
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As the vector representation Γ‖(e, C) arises by multiplication of Γσ(e, C)
with the one-dimensional representation Γ(Rz) = A′

2, the summation term is
left unchanged, and Γ‖(e, C) and Γσ(v, C) differ in only one term:

(N odd): Γ‖(e, C)− Γσ(v, C) = Γ(Rz)− Γ0 = A′
2 − A′

1. (12)

Thus, for the odd-N loop, (6) becomes

(N odd): Γfix = −Γ(Rz)× (ΓT + ΓR) = −A′
1 − E ′

1 − A′′
1 − E ′′

1 . (13)

3.1.2 N even

For even cycles, edge and vertex representations are in general different. An
even cycle is a bipartite graph, one in which vertices can be partitioned into
two sets, such that no two members of a set are adjacent. Vertices of the
cycle belong alternately to these ‘starred’ and ‘unstarred’ sets. The ver-
tex representation for even N , as before, can be written as an expansion
in angular momentum, but now also includes a final, non-degenerate, fully
antisymmetric combination that has a change of sign between each adjacent
pair of vertices. The symmetry of this special combination is the alternating
representation, Γ?, which has character χ?(S) = +1 for operations that pre-
serve, and χ?(S) = −1 for operations that swap, the starred and unstarred
sets.

For even cycles, the difference between the vertex and edge permutation
representations can be calculated from Γ?, as Γσ(v, C) includes Γ?, but the
edge representation includes Γ? × Γ(Rz), where Γ? and Γ? × Γ(Rz) form the
two halves of the L = p angular-momentum pair. The vertex and edge
representations, for Dph with p finite, are therefore

(N even): Γσ(v, C) = A1g + Γ? +

p−1∑
L=1

ELg/u, (14)

(N even): Γσ(e, C) = Γσ(v, C)− Γ? + Γ? × Γ(Rz), (15)

and the edge-vector representation (10) is

(N even): Γ‖(e, C) = A2g + Γ? +

p−1∑
L=1

ELg/u. (16)

In (14) and (16), the notation means that ELg/u has g symmetry for even L
and u symmetry for odd L.

Thus, for the even-N loop, (6) becomes

(N even): Γfix = −Γ(Rz)× (ΓT + ΓR) = −A1g − E1g − A2u − E1u. (17)
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Figure 5: Correspondence between vertex- and edge-vector representations
for cycles. Weights in the vertex combinations (top row) correspond to net
flows into vertices in the edge-vector combinations (bottom row). Only one
combination of each type is unmatchable (X).

3.1.3 General formulation

Although the end results (13) and (17) appear superficially different because
of the different notation for representations of DNh with odd and even N , they
carry the same information, which is topological in character. The generic
form for Γfix arises from the fact that, for any cycle, Γ‖(e, C) differs from
Γσ(v, C) only by substitution of Γ(Rz) for Γ0. A cyclic array of arrows cannot
be totally symmetric in DNh but it can achieve the symmetry of a rotation
when all N arrows point in the same sense; a cyclic array of vertices can have
a totally symmetric set of weights, but cannot have weights corresponding to
rotation (Figure 5). Both odd-N and even-N cases are therefore represented
by the general formula

Γfix = −Γ(Rz)× (ΓT + ΓR) = −Γ0 − Γε − Γ(x, y)− Γ(Rx, Ry), (18)

which can easily be specialised for any particular group. This can be done
either by following the fate of the irreducible representations under descent
in symmetry, or by using the characters χ(S) for the individual operations.
Γfix has character zero under all improper operations (as it is proportional
to (ΓT + ΓR)) and under proper operations it has χfix(E) = −6, χfix(Cn) =
−2− 4 cos φ, χfix(C

′
2) = −2.

The RHS of (18) is the (negative of the) generic symmetry description of
the set of states of self-stress arising from the linking together of N bodies
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in a cycle. This is a direct consequence of the toroidal topology of the linked
bodies, and other rigid toroidal assemblies also have the same set of states of
self-stress. The same symmetry has been derived for the states of self-stress
of toroidal deltahedra using symmetry-extended Maxwell analysis (Fowler
and Guest, 2002), and occurs as a contribution to the mobility equation
for the toroidal rotating rings of tetrahedra (Fowler and Guest, 2005). The
deltahedra are rigid and so have no term Γ(m); compared to the N -loops,
the rotating rings have a different mode of linkage and a different partial
cancellation of Γ(m) and Γ(s). However, in all three cases, (18) appears as
the symmetry description of the states of self-stress imposed by closure of a
chain of bodies into a rigid torus.

3.2 Hinge freedoms for the N-loop

An angular-momentum-type expansion is also useful for the representation
of the hinge freedoms, Γf = Γε × Γσ(e, C). In D(2p+1)h, multiplication by
Γε = A′′

1 interconverts E ′
L and E ′′

L, and, from (11),

(N = 2p + 1): Γf = Γε +

p∑
L=1

ΓL × Γε = A′′
1 +

p∑
L=1

E ′′
L (19)

In D2ph, multiplication by Γε = A1u interconverts ELg and ELu, and, from
(15),

(N = 2p): Γf = Γε + Γ? × Γ(z) +

p−1∑
L=1

ΓL × Γε = A1u + Γ? × Γ(z) +

p−1∑
L=1

ELu/g

(20)

where the reversal of g/u subscripts in (20) means that odd L values now
imply g, even L values imply u.

The general expression subsuming odd and even cases is therefore

Γf = Γε + [Γ? × Γ(z)] +

b(N−1)/2c∑
L=1

ΓL × Γε (21)

where the term in square brackets is understood to be omitted for odd N .
This expression is easily specialised for any particular group: Γf has char-
acters χf (E) = N = −χf (σh), χf (Cn) = χf (Sn) = χf (i) = 0, χf (σv) = ev,
χf (C

′
2) = e2, where ev, e2 are the numbers of edges on the σv and C ′

2 sym-
metry elements, respectively.
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3.3 Mobility of the N-loop

Substitution of (13),(19) and (17),(20) into the mobility criterion (8) leads
to explicit expressions for the mobility of the N -loop:

(N = 2p + 1): Γ(m)− Γ(s) = −A′
1 − E ′

1 +

p∑
L=2

E ′′
L (22)

(N = 2p): Γ(m)− Γ(s) = A2u × Γ? − A1g − E1u +

p−1∑
L=2

ELu/g (23)

(all N): Γ(m)− Γ(s) = [Γ? × Γ(z)]− Γ0 − Γ(x, y) +

b(N−1)/2c∑
L=2

ΓL × Γε (24)

where Γ(x, y) is the representation of the two translations in the plane per-
pendicular to the principal axis.

In equations such as (24) and (21), Γ? (defined only when N is even) de-
pends on both the size of the N -loop and its setting within the point group. If
we agree to fix the even-N -cycle in DNh so that C ′′

2 and σd symmetry elements
each pass through vertices of the cycle, then Γ? has χ?(C

′
2) = χ?(σv) = −1,

χ?(C
′′
2 ) = χ?(σd) = +1, and is Γ? = B2g for N = 4m and Γ? = B2u

for N = 4m + 2. The term appearing in Γf and Γ(m) − Γ(s) is then
Γ? × Γ(z) = B1u for N = 4m and Γ? × Γ(z) = B1g for N = 4m + 2.

Equation (24) is the generic symmetry description of the mobility arising
from the linking together of N bodies in a cycle where the links are revolute
hinges whose axes intersect. In many applications, the N -loop will be regular,
i.e., it will be characterised by a single nearest-neighbour distance, and a
constant intersection angle. However, (24) applies more generally, both for
a regular object adopting a less symmetrical confirmation, and for an object
with a more general distribution of distances and angles, when specialised to
the appropriate point group.

4 Examples

In this section we will look at some general classes of conformations of N -
loops, and examine the behaviour of small cases.
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4.1 Planar conformations of N-loops

If the intersection angle θ is π − 2π/N , then a unique planar conformation
is possible for a regular N -loop. We can use the present approach to de-
rive a general formula for the mechanisms and states of self-stress in such
conformations.

The group of the regular polygon is DNh. In the groups of this type there
is no cancellation between the positive and negative terms of the RHS of
(24), i.e., the non-degenerate representations Γ? × Γ(z), Γ0 are not equal,
and the degenerate Γ(x, y) is not repeated by any of the terms under the
summation sign. Hence we can be sure that the negative terms are included
in the symmetry of the states of self stress and the positive terms in the
symmetry of the mechanisms:

Γ(s) ⊃ Γ0 + Γ(x, y) (25)

Γ(m) ⊃ [Γ? × Γ(z)] +

b(N−1)/2c∑
L=2

ΓL × Γε (26)

We can strengthen these inequality results by the following argument
which fixes Γ(s). Consider building up the cycle by introducing the N joints
between the bodies one by one in a cyclic order. When N − 1 joints have
been introduced, we have a chain of N bodies connected by N − 1 revolute
hinges, each of which lies in the plane, and do far there are no states of
self-stress. States of self-stress arise from possible misfits when connecting
the final joint. No in-plane misalignment can be corrected by rotation of
an in-plane hinge, but any out-of-plane misalignment can be corrected by
appropriate hinge rotation. Thus, s = 3. The inequalities (25) and (26)
become equalities, applicable for any N :

Γ(s) = Γ0 + Γ(x, y) (27)

Γ(m) = [Γ? × Γ(z)] +

b(N−1)/2c∑
L=2

ΓL × Γε (28)

Note that the term containing Γ∗ is defined only for N even, and the sum-
mation over L is non-empty only for N ≥ 5.

N = 3: The three-loop can exist only in a planar confirmation, and hence is
generically rigid. Evaluation of Γ(s) and Γ(m) in D3h leads straightforwardly
in Γ(s) = A′

1 + E ′ and Γ(m) = 0.
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N = 4: In D4h symmetry, with the convention that C ′′
2 and σd pass through

a pair of vertices in the contact polyhedron, we have for the four-loop Γ(m)−
Γ(s) = B1u −A1g −Eu, and hence Γ(s) = A1g + Eu and Γ(m) = B1u. There
is therefore an infinitesimal mechanism which may be blocked by the totally
symmetric state of self-stress (Kangwai and Guest, 1999), and hence may
not extend to a finite path.

N ≥ 5: The 5-loop (D5h) has Γ(s) = A′
1 + E ′

1 and Γ(m) = E ′′
2 . The 6-loop

(D6h) has Γ(s) = A1g + E1u and Γ(m) = B1g + E2u. The series continues
with s = 3 and m = N − 3, and the general forms of Γ(s) and Γ(m) in DNh

are deducible from (23) and (22).

4.2 Crown conformations of N-loops

For even values of N , and intersection angles θ smaller than π−2π/N , ‘crown’
conformations of D(N/2)d symmetry, in which the bodies lie alternately above
and below the median plane, are possible. In D(N/2)d, Γ∗ is equal to Γ(z) (B2

when N/2 is even, A2u when N/2 is odd), and the product Γ(z)×Γ? is equal
to Γ0. Degenerate representations in these groups obey

ΓL × Γε = ΓN/2−L (29)

and therefore the summation of ΓL × Γε from L = 2 to L = b(N − 1)/2c
contains Γ(x, y) for N ≥ 6. Thus, both terms describing states of self-stress
in (24) are cancelled out, leaving the following expressions for the mechanisms
in the two distinct cases of even N .

(N = 4p + 2 ≥ 6): Γ(m) ⊃
(N−2)/4∑

i=2

(Eig + Eiu) (30)

(N = 4p > 6): Γ(m) ⊃
(N−4)/2∑

i=2

Ei (31)

N = 4: In the D2d crown conformation of the 4-loop, Γ(m) − Γ(s) =
−Γ(x, y), indicating that Γ(s) contains Γ(x, y) = E. The loop is generically
rigid, and hence s = 2 and Γ(s) = E.

N = 6: In the D3d crown conformation of the 6-loop, Γ(m) − Γ(s) = 0.
This conformation is generically rigid with m = s = 0. The chair form of
cyclohexane is a specific instance with θ = θT .
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N = 8: In the D4d crown conformation of the 8-loop, Γ(m) − Γ(s) = E2.
There is a degenerate pair of mechanisms, related by a rotation of π/4 about
the principal axis. Each follows one of the pair of two-noded (xy, x2 − y2)
harmonics. In each mechanism, one pair of bodies moves simultaneously
outward, and another inward.

Mobilities for each crown conformation could also have been found by tak-
ing the mobility for the flat conformation, and making a descent in symmetry
within the point-group chain DNh → D(N/2)d.

4.3 Special cases

Manipulation of models, as described in the introduction, reveals a number
of conformations that do not fit into the previous classes.

N = 6 For θ = π/2 the smallest special case occurs for N = 6, and is an
analogue of the well-known ‘boat’ form of cyclohexane. Unlike the ‘chair’,
this is a flexible conformation. Generically it retains only a C2 axis through
the ring centre, but can attain the higher symmetries C2v and D2d at special
points along the path of the mechanism (Figure 2(b.ii,iii)).

In the generic C2 conformation, Γ(m) = Γ(s) = A − B. At the D2h

conformation (C2(y) passing through two hinges), Γ(m) = Γ(s) = B1 − B3.
At the C2v conformation (σ(y) passing through two hinges), Γ(m) = Γ(s) =
A2−B2. Hence there is a mechanism preserving a C2 axis, and in the absence
of a equisymmetric state of self-stress, this mechanism must extend to a finite
one-dimensional path.

N = 7 The mobility count for generic conformations of the 7-loop implies
the existence of at least one mechanism. Manipulation of the models with
θ = π/2 reveals two independent sets of non-interconverting conformations,
analogues of the ‘boat’ and ‘chair’ of cycloheptane. Both are observed to
be flexible, but generally with only the trivial symmetry C1. The maximum
point groups, reached at special conformations, are Cs (boat and chair) and
C2 (‘twist’-boat and ‘twist’-chair). For all conformations, Γ(m) − Γ(s) is a
single irreducible representation. In the three accessible groups Cs, C2, C1,
this representation is, respectively, A′′, B and A. This indicates at least one
mechanism that acts to lower the symmetry at the high-symmetry points.
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5 Conclusions

We have given a general description of the mobility of the N -loop. Given any
particular geometric configuration of an N -loop, we can predict its mecha-
nisms and states of self-stress in greater detail than would be possible by
counting arguments alone, and in favourable cases, can give a complete sym-
metry description of the mechanisms and states of self-stress. To complete
the picture, it would be interesting to determine for given N the ranges of θ
for which confirmations are realisable, and any induced partitioning of con-
formation space. For each realisable confirmation, the symmetry machinery
of the present approach can be applied. Techniques exist for numerical deter-
mination of realisability, and tracking of mechanisms in conformation space
(Porta et al., 2007). Their application could give further insight into fields as
diverse as chemical conformation analysis, and rigidity theory of engineering
structures.

We note that it would be possible to extend the concept of N -loops to
polycyclic and three dimensional cage topologies by allowing more than two
hinged contacts per body. Such cases are equally amenable to a symmetry
treatment of the type that we have described here. However, full polyhedra
tend to be highly overconstrained.
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