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Abstract

An infinite series of 2-fold, 2-way weavings of the cube, correspond-
ing to ‘wrappings’, or double covers of the cube, is described with the
aid of the 2-parameter Goldberg-Coxeter construction. The strands of
all such wrappings correspond to the central circuits of octahedrites (4-
regular polyhedral graphs with square and triangular faces), which for
the cube necessarily have octahedral symmetry. Removing the sym-
metry constraint leads to wrappings of other eight-vertex convex poly-
hedra. Moreover, wrappings of convex polyhedra with fewer vertices
can be generated by generalising from octahedrites to i-hedrites, which
additionally include digonal faces. When the strands of a wrapping cor-
respond to the central circuits of a 4-regular graph that includes faces
of size greater than 4, non-convex ‘crinkled’ wrappings are generated.
The various generalisations have implications for activities as diverse
as the construction of woven closed baskets and the manufacture of
advanced composite components of complex geometry.

1 Introduction

Carbon-fibre composites are used throughout advanced manufacturing, and
figure in, for instance, the latest aerospace components (Toensmeier, 2005).
In many applications, tows (bundles) of fibres are used in the form of a
weave (Onal and Adanur, 2007); in other applications, tows of fibres are
wrapped on a former, using tow placement machines (Rudd et al., 1999).
Directly related to these modern technologies is the long-established weav-
ing of baskets, open and closed, a technology common to many cultures and
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Figure 1: Skew weaving of the cube with b = 5 and c = 2 (see text for defi-
nitions). The dark ribbon is a single closed strand. The whole weaving has
3 symmetrically related strands of length 116 unit squares each. This closed
basket was constructed by Felicity Wood of the Oxfordshire Basketmakers
Association, who provided the photograph.

periods (Tarnai, 2006; Pitt Rivers Museum, 2009), which continues to gener-
ate applications in art and craft (Kavicky, 2004; Pulleyn, 1991) and modern
architecture (Ministry of Land, Infrastructure and Transport and Nihon
Sekkei Inc., 2005). Closed baskets are often considered as woven spheres
or polyhedra, and are treated in many mathematical reviews and books,
e.g., Pedersen (1981); Gerdes (1999); von Randow (2004). The present pa-
per examines mathematical aspects of weaving on polyhedral surfaces, with
practical applications in mind, concentrating initially on weavings on the
cube (Figure 1), before extending the treatment to a class of weavings that
turn out to be described by the ‘octahedrites’ of Deza and Shtogrin (2003).

For the plane, the simplest weaving is the 2-fold, 2-way weave (Grünbaum
and Shephard, 1988) in which a typical point is covered by two strands
(hence ‘2-fold’), with the strands crossing at right angles (hence ‘2-way’), in
an overall check pattern where an individual strand passes alternately over
and under at crossings. The same basic definition can be applied to a weav-
ing of a closed basket on the surface of the cube (Tarnai, 2006), and, as we
shall see, to other polyhedra; as on the plane, strands cross at right angles,
and each strand passes alternately over and under at crossings. However, the
strands are now necessarily of finite length, and may have self-intersections.
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For construction and classification, it is convenient to simplify the physical
weave to a double cover, where the up-down relationship of the strands has
been ‘flattened out’, so that, apart from points on strand boundaries, ev-
ery point belongs to two orthogonal portions of strands, with no concept
of one strand being above another. In what follows, we will be concerned
with the properties of this double-cover version of the weaving, which we
can informally call a ‘wrapping’.

For the particular case of the cube, the strict alternation of the check
pattern is necessarily disrupted at vertices, and the symmetries of the overall
pattern are restricted to a subset of those of the underlying cube. Weav-
ings of the cube fall into three types, depending on the pairs of angles of
intersection between the strand and the cube edges: Class I (0, π/2), Class
II (π/4, π/4), Class III (θ, π/2 − θ), with 0 < θ < π/4. Examples of all
three are illustrated in Figure 2. This classification echoes the schemes for
geodesic domes (Coxeter, 1971; Wenninger, 1979), and for classifying carbon
nanotubes into armchair, zig-zag and chiral types (Hamada et al., 1992). As
wrappings, double covers in Classes I and II have the full set of symmetries
of the cube, whereas those in Class III have only the rotations.

Consideration of the ways in which wrappings of the cube can be rep-
resented and classified leads naturally to polyhedral graphs, from which it
becomes apparent that all cube wrappings can be represented as members of
the family of octahedrite graphs (Deza and Shtogrin, 2003). Generalisations,
by removal of the restriction to octahedral symmetry, by addition of digo-
nal faces to the octahedrite recipe, or by introduction of general face sizes,
will be shown to generate further infinite families of convex and non-convex
wrapped polyhedra, and hence of closed baskets.

2 Geometrical approach to cube wrappings

A natural representation of a double covering of the plane by strands shows
the strand boundaries as orthogonal lines. This leads to a tessellation of the
plane by square tiles, meeting four at a vertex, i.e., {4, 4} in the Schläfli no-
tation (Coxeter, 1969). Each square tile corresponds to two overlaid portions
of strands of the original weaving. Many different weavings may correspond
to a given double cover (Grünbaum and Shephard, 1988).

Wrappings of the cube can be represented in a similar way by drawing
a net of the cube onto the {4, 4} tessellation, with the restriction that the
vertices of the net are lattice points, i.e., points at which strand boundaries
cross. This restriction follows from the observation that a cube vertex cannot
lie within a strand, as the sum of angles at a cube vertex is only 3π/2. Each
such net can be described by a symbol {4, 3+}b,c, where the 4 implies a
tiling by squares, and the 3+ indicates that three or more square tiles meet
at each vertex of the net. The integers b and c (b ≥ 0, c ≥ 0, b+c > 0) define
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(a.i) (b.i) (c.i)

(a.ii) (b.ii) (c.ii)

(a.iii) (b.iii) (c.iii)

(a.iv) (b.iv) (c.iv)

top
front

bottom

Figure 2: The three classes of cube wrappings. Columns (a), (b) and (c)
illustrate wrappings of class I, II and III respectively. The illustrated wrap-
pings are {4, 3+}3,0, {4, 3+}2,2 and {4, 3+}3,1. Row (i) shows a single strand
wrapped onto the cube, and row (ii) shows the same strand on the unfolded
net of the cube. Row (iii) shows the complete weaving, with the single strand
highlighted. Row (iv) shows the dual maps of the wrappings as graphs em-
bedded on the cube.

4



0
0

1

1

2 …

…

b

c

Figure 3: Definition of parameters b and c for tiling {4, 3+}b,c of the cube.

how all the (congruent) faces of the net lie on the underlying tessellation
of the plane (Figure 3): from any starting vertex, an adjacent vertex is
reached by making b steps along edges of the tessellation in one direction,
followed by c steps after a change in direction by an angle of π/2. This
2-parameter construction is ultimately derived from the work of Goldberg
(1937) and Coxeter (1971), and has been applied in the present context by
several authors (Tarnai, 2006; Dutour and Deza, 2004; Deza and Dutour
Sikirić, 2007)

If a square tile has unit area (if each strand has unit width), the area
of each face of the net is S = b2 + c2, and the total length (area) of all
strands is therefore 12S, and the angle at which a strand meets a cube edge
is tan−1(b/c), or its complement tan−1(c/b). Class I corresponds to the case
b = 0 or c = 0; {4, 3+}b,0 is identical with {4, 3+}0,b. Class II corresponds
to the case b = c. Class III corresponds to b 6= 0, c 6= 0, b 6= c, and the
pair of Class III wrappings with symbols {4, 3+}b,c and {4, 3+}c,b are enan-
tiomeric as a consequence of the reflection symmetries of the cube (Dutour
and Deza, 2004). Figure 4 shows the tilings of the cube faces for the wrap-
pings {4, 3+}b,c for small values of b and c. Given this simple parameteri-
sation, it is easy to explore some basic properties of small examples within
the three classes. Numerical experimentation gives the results reported in
Tarnai (2006) for the parameter s(b, c), the number of strands in the cube
wrapping described by b and c. Note that s(b, c) = s(c, b), as exchange of
b and c simply flips the chirality of the wrapping. Further combinatorial
information can be obtained from Dutour and Deza (2004) Table 6.

Strand counting for Class I is straightforward. A wrapping in Class I
has either b = 0 or c = 0, and without loss of generality we take c = 0.
The strands all lie parallel to the cube edges (Figure 2(a)), and the double
cover has Oh symmetry; each strand has length 4b, so s(b, 0) = 12(b2 +
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Figure 4: Tilings of the faces of the cube (adapted from Tarnai, 2006), for
differing values of the parameter pair b, c. Wrappings belonging to Class
I appear (in two copies) along the horizonal axis; wrappings belonging to
Class II appear along the central vertical axis; the two enantiomeric versions
of each Class III wrapping appear in mirror-symmetric off-axis positions.
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02)/4b = 3b. In Class II, the strands cross the faces at an angle of π/4 to
the edges (Figure 2(b)), and the length of each strand is three times that of
the diagonal of a cube face, i.e., 6b. Hence s(b, b) = 12(b2+b2)/6b = 4b = 4c.

For counting strands in Class III, another useful observation is that for
any pair b = kb0 and c = kc0 with k an integer, the number of strands scales
as s(b, c) = ks(b0, c0) = s(c, b), and so it is only necessary to understand
the behaviour of s(b, c) for the ‘canonical’ pairs where b and c are co-prime.
Where b and c are co-prime, the number of strands is 3, 4 or 6, and the
double covering has point-group symmetry D4, D3, or D2, with all strands
equivalent.

3 Graph-theory based approach

A more general perspective on the wrapping of cubes (and other polyhedra)
comes from a graph theoretical approach. The geometric construction of the
previous section specifies a tiling (and so a wrapping) of the cube and hence
fixes a polyhedral graph, T , where the faces are the square tiles, the edges
are tile edges, and the vertices are tile corners. Note that the vertices of the
underlying cube coincide with the 8 three-valent vertices of T , whereas the
edges of the cube may run across faces and edges of T . The sum of angles
around each 4-valent vertex of T is 2π, and the tiling is ‘locally flat’ at these
points; these vertices all lie on faces or edges of the underlying cube. The
cube is the convex realisation of T .

The dual of T , i.e., T ?, is obtained by placing a vertex at the centre of
each square tile. The edges of T ? are then defined by adjacencies (shared
edges) of square tiles. Row (iv) of Figure 2 shows the graphs T ? for three
wrappings. As all faces of the primal graph (T ) are square, T ? is a 4-regular
graph. The faces of T ? are either quadrangular, or triangular (corresponding
to the eight corners of the cube). This construction suggests the study of 4-
regular polyhedral graphs as a basis for systematics of wrappings: T ? will be
a general 4-regular polyhedral graph; its dual will be a tiling T corresponding
to a wrapping of an underlying object.

The account below is closely based on the treatment of octahedrite
graphs by Deza and co-workers (Deza and Shtogrin, 2003; Deza et al., 2003),
and shows how their results can be applied to the wrapping problem for
cubes and for more general polyhedra.

3.1 4-regular polyhedral graphs

A polyhedral graph (a graph that is planar and 3-connected (West, 2001))
obeys the Euler theorem

v + f = e+ 2 (1)

7



where v is the number of vertices, f the number of faces, and e the number
of edges. If the graph is 4-regular, e = 2v, and if fr is the number of faces
with r sides, we have, by counting faces and edges,∑

r

(4− r)fr = 8. (2)

An immediate consequence is that every 4-regular polyhedral graph has
f3 ≥ 8 triangular faces. An important subset of 4-regular polyhedra consists
of those with the minimum number of triangular faces, and with all other
faces quadrangular, i.e., with f3 = 8 and f4 = 0 or f4 ≥ 2. These are
the polyhedra which are called octahedrites by Deza and Shtogrin (2003),
and they are, in a sense, the equivalents amongst 4-regular polyhedra of the
fullerenes (Fowler and Manolopoulos, 2006) amongst cubic polyhedra.

The numbers N of octahedrites with n vertices are known for small
n (A111361 in Sloane’s encyclopedia of integer sequences, (Sloane, 2008;
Brinkmann et al., 2003)). They are N(n): 1(6); 0(7); 1(8); 1(9); 2(10);
1(11); 5(12); 2(13); 8(14); 5(15); 12(16); 8(17); 25(18); 13(19); 30(20) . . ..
The point groups allowed for octahedrites comprise the 18 possibilities Oh,
O, D4d, D3d, D2d, D4h, D3h, D2h, D4, D3, D2, S4, C2v, C2h, C2, Cs, Ci,
C1 (Deza et al., 2003). The subset of octahedrites that have octahedral (O
or Oh) symmetry is useful in describing wrappings of the cube; each is the
dual, T ?, of a wrapping T .

Some definitions and facts about octahedrites are now briefly summarised.
For details and proofs, the original papers by Deza and co-workers (Deza
and Shtogrin, 2003; Deza et al., 2003) should be consulted. Graphs of which
all vertices are of even degree are Eulerian, i.e., they admit circuits that
visit every edge exactly once. Eulerian polyhedral graphs have no bridges
(cut-edges) and no cut-vertices. For Eulerian graphs embedded in surfaces,
we can define central circuits. A central circuit (CC) is constructed start-
ing with a single edge, and visiting vertices according to the rule that the
sequence enters and leaves any given vertex by opposite edges. For a finite
graph, this rule leads to a circuit. The relevance to the wrapping problem
is that each CC of the 4-regular graph T ? corresponds to a strand in the
weaving of T (with the CC being the mid-line of the strand).

Central circuits may be simple, or self-intersecting. The set of CC’s
partitions the set of edges of the graph. In a 4-regular graph, the full set
of CC’s provides a double cover of the vertices: every vertex is visited twice
by CC’s, either once each by two distinct CC’s, or twice by a single self-
intersecting CC. The length of every CC is even, and the total length of all
CC’s in the graph is 2n, by the double-cover property, with n the number of
vertices of the 4-regular graph (the number of squares in the primal). Thus,
all strands are of even length, and, for a cube wrapping, their total length
is 12S = 12(b2 + c2).
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A railroad is a circuit of square faces in an octahedrite. Octahedrites
without railroads are called irreducible. In the context of cube wrappings,
the duals of the wrappings with b and c co-prime are irreducible octahedrites.
It can be proved that every irreducible octahedrite, of whatever symmetry,
has at most six CC’s. Thus, for cube wrappings with b, c co-prime, the
number of strands is limited to 3, 4, or 6, as noted earlier. There are only
eight irreducible octahedrites in which all CC’s are simple circuits. The
vertex counts (and symmetries) are 6 (Oh), 12 (Oh, D3h), 14 (D4h), 20 (D2d),
22 (C2v), 30 (O) and 32 (D4h) (Deza and Shtogrin, 2003). The three of
octahedral symmetry correspond to cube wrappings with parameters {1, 0},
{1, 1}, {2, 1}, i.e., one example from each of classes I, II and III.

Deza and co-workers also make an intriguing connection between octa-
hedrites and knot theory. Every 4-valent plane graph can be seen as a regular
alternating projection of an alternating knot or link (Kawauchi, 1996) and
so a weaving is a physical manifestation of an alternating link. Since a
wrapping is equivalent to a 4-valent graph T ?, every wrapping corresponds
to a weaving. Deza and Shtogrin (2003) catalogue the associations between
some small octahedrites and well known objects of knot theory. Clearly, this
could give an interesting direction for exploration in practical basketry.

Perhaps the most significant implication of the association between wrap-
pings and octahedrites is that it soon becomes clear that there are many
other wrappable polyhedra beyond the simple cube. Any octahedrite T ? de-
fines a tiling T . The Alexandrov existence and uniqueness theorems (Pak,
2008) guarantee that T can be realised with all faces square as the wrapping
of a unique underlying 8-vertex object P , where P is either a polyhedron or
a ‘doubly covered polygon’, i.e., a degenerate polyhedron with just two faces.
In general, many non-convex realisations are also possible, corresponding to
different distributions of folds in the square faces. In fact, the volume of P
can always be increased by taking a non-convex realisation (see Pak, 2008,
Theorem 39.4). For practical construction of closed baskets, some of these
non-convex realisations may, in fact, be preferable.

Figure 5 gives a complete catalogue of the octahedrites with n ≤ 16, and
Figure 6 gives an example weaving derived from each of the six smallest oc-
tahedrites. In each case we have chosen to show the weaving on the Alexan-
drov polyhedron. A closed basket based on the smallest non-octahedrally
symmetric octahedrite (the square antiprism, 8-1 in Figure 5), and woven
by Felicity Wood, is shown in Figure 7.

It may be useful to recapitulate the relation between octahedrites of
octahedral symmetry and wrappings of the cube. As Figure 2 row (iv)
shows, each wrapping on the cube defines an octahedrite graph via the set
of mid-lines of all strands. That octahedrite graph will have either full
octahedral (Oh) or octahedral rotational (O) point-group symmetry. Con-
versely, any octahedrite of Oh or O symmetry corresponds to a wrapping
of the cube. The convex realisation of the dual of each such octahedrite is
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6-1 Oh 8-1† D4d 9-1† D3h 10-1 D4h 10-2 D2 11-1 C2v

12-1 Oh 12-2 D3h 12-3† D3d 12-4† D2 12-5 C2 13-1 C2v

13-2† C2 14-1 D4h 14-2 D4h 14-3 D2d 14-4† C2 14-5 D2

14-6 Cs 14-7 D2 14-8 C2 15-1 D3h 15-2† C2 15-3 Cs

15-4 Cs 15-5 C2 16-1 C2 16-2 D4d 16-3 D4h 16-4† D4d

16-5† D2 16-6† C2 16-7† C2 16-8† Cs 16-9† C2 16-10 Cs

16-11 D2 16-12 C1

Figure 5: A complete catalogue of octahedrites with N = 16 or fewer ver-
tices. The labelling follows Deza and Shtogrin (2003), and includes the
vertex number, isomer count and point group. The dagger added to the
label indicates an octahedrite with only one central circuit, and hence only
one strand in the weaving. The Schlegel diagrams are collated and redrawn
from Deza and Shtogrin (2003).
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(a) (b) (c)

(d) (e) (f)

Figure 6: Examples of wrappings based on octahedrites. Each strand in a
wrapping is shown striped, with four grey stripes running along its length.
The wrapped solids are the Alexandrov polyhedra derived from the six small-
est octahedrites: (a) 6− 1 Oh; (b) 8− 1 D4d; (c) 9− 1 D3h; (d) 10− 1 D4h;
(e) 10 − 2 D2; (f) 11 − 1 C2v. The Alexandrov polyhedra are combinatori-
ally equivalent to: (a) the cube; (b) the square antiprism; (c) the bicapped
trigonal prism, which is also J14, the 14th Johnson solid (Johnson, 1966);
(d) the cube; (e) the snub disphenoid or triangular dodecahedron, J84, (f)
the gyrobifastigium, J26. In the numbering used in Read and Wilson (1998)
these graphs are: (a) Tc46; (b) Tc249; (c) Tc168; (d) Tc46; (e) Tc301; (f)
Tc94. In the numbering of 8-vertex coordination polyhedra given in Britton
and Dunitz (1973) they are labelled: (a) 257; (b) 128; (c) 198; (d) 257; (e)
14; (f) 244.
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Figure 7: Weaving of the square antiprism. The ribbon forms a single closed
strand of 16 unit squares. This closed basket was constructed by Felicity
Wood, who also provided the photograph.

Figure 8: Wrappings of the cube. The tiling T in each case is the dual of an
octahedrite with octahedral rotational symmetry: 6 − 1 Oh; 12 − 1 Oh; 24
Oh; 30 O; . . .. All four wrappings can be seen as inflations of the first (the
unit cube) with (b, c) = (1, 0), (1, 1), (2, 0), (2, 1).

a decorated cube, with corners corresponding to triangular faces of the oc-
tahedrite graph, and all 4-coordinate vertices of the octahedrite appearing,
either on a cube edge, or in a flat region on a face. Figure 8 shows cube
wrappings with (b, c) = (1, 0), (1, 1), (2, 0), (2, 1), which are derived from 6-,
12-, 24-, and 30-vertex octahedrites, respectively.

Similar reasoning applies to the general, non-octahedrally symmetric
octahedrites. By the Goldberg-Coxeter construction (Dutour and Deza,
2004; Deza and Dutour Sikirić, 2007), any octahedrite on n = n0 vertices can
be expanded to give an octahedrite on n = (b2+c2)n0 vertices. This involves
stretching and rotating the net so that each edge-length is multiplied by the
inflation factor

√
b2 + c2. Each octahedrite is therefore the parent of an

infinite sequence of inflated versions, and hence it is natural to define prime
octahedrites as those that are not produced by the inflation of any smaller
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Figure 9: Wrappings of the square antiprism where the triangular faces are
right isosceles triangles. The octahedrites that generate these wrappings
are the first four Goldberg-Coxeter expansions of the octahedrite 8-1, the
first octahedrite with non-octahedral symmetry, The four examples have
(b, c) = (1, 0), (1, 1), (2, 0), (2, 1), where the pair of values (b, c) relates to the
shorter edge of the triangles.

octahedrite. If the vertex count of a prime octahedrite is inflated by a factor
(b2 + c2), where {b, c} = {b, 0} or {b, c} = {b, b}, the enlarged octahedrite
has the same symmetries as the prime parent; otherwise it has at least the
(proper) rotational symmetries. Each inflation of a prime octahedrite will
have a dual with a convex realisation, which will be identical to that of
the dual of the prime parent, apart from a geometric scaling by

√
b2 + c2.

Thus each family could be considered as a sequence of increasingly complex
wrappings of the same underlying polyhedron P . Figure 8 shows the first
four members of the family where the parent is the smallest octahedrite 6-1,
and where P is the cube. Likewise, Figure 9 shows the first four members of
the family where the parent is the next smallest octahedrite 8-1, and where
P is the square antiprism.

A natural question is: what convex polyhedra can be wrapped? For those
polyhedra P that ultimately derive from octahedrites, we have a partial
answer. In this case, P must have 8 vertices, and the implication is that
there are at most 258 combinatorially distinct P ; these comprise the 257 8-
vertex polyhedra (Read and Wilson, 1998, chapter 5) and the doubly covered
octagon. The examples in Figure 6 show that at least five of the set of 257
polyhedra can be wrapped, some in multiple geometric realisations; the other
polyhedral cases have not yet been explored, but we note that the octagon
occurs as P for the case 14-1, as shown in Figure 10.

4 Extensions

The family of ‘i-hedrites’ is a generalisation of the octahedrites: an i-hedrite
has f2 = 8−i digonal faces and f3 = 8−2f2 triangular faces, with i = 4, . . . , 8

13



(a) (b) (c)

Figure 10: Wrapping an octagon: (a) the octahedrite 14-1, redrawn from
Figure 5 to emphasise the full D4h symmetry (with arrows directed to a
vertex at infinity); (b) the tiling formed as the dual of the octahedrite; (c)
one face of the wrapped polygon.

(Deza et al., 2003). Although not polyhedral, the duals of these graphs gen-
erate a square tiling that is an intrinsically convex polyhedral surface, i.e.,
it has everywhere non-negative curvature, and hence Alexandrov’s theorem
still applies. Duals of i-hedrites therefore generate wrappings of convex poly-
hedra (or doubly-covered polygons) in much the same way as octahedrites.
Figure 11 gives two examples of i-hedrites, their duals, and the wrapped
objects. It is even possible to go a step further in the generalisation of the
octahedrites, and allow faces of size 1 (loops) which give univalent vertices
in the tiling.

Beyond the octahedrite and i-hedrite classes, those members of the wider
class of 4-regular polyhedra that have negative curvature also generate wrap-
pings. The 4-regular polyhedra obey (2), i.e.,

1f3 − 0f4 − 1f5 − 2f6 − . . . = 8. (3)

Those with fr > 0 for some r > 4 have a region or regions of negative cur-
vature. The numbers of general 4-regular polyhedra are given by sequence
A007022 in Sloane’s encyclopedia (Sloane, 2008; Brinkmann et al., 2003)).
Figure 12 shows small examples based on dualising polyhedra with pentago-
nal and hexagonal faces; in this case, non-convex realisations are inevitable
because of the negative curvature, and so we have chosen symmetrically
crinkled structures to preserve the maximum Dnd symmetry of the under-
lying polyhedra. Examples based on 4-regular polyhedra with even higher
symmetries can also be constructed. An icosahedrally symmetric crinkled
structure is shown in Figure 13, similar in appearance to the 3-fold woven
object presented in Plate D of Pedersen (1981).
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(a.i) (a.ii) (a.iii)

(b.i) (b.ii) (b.iii)

Figure 11: Examples of wrapping based on i-hedrites, showing (i) the i-
hedrite graph, (ii) the dual, and (iii) the wrapped object, for (a) 10-1 D4

(with one vertex of the i-hedrite at infinity), and (b) 12-3 D2d (with one
vertex of the dual at infinity) The numbering of the i-hedrites follows Deza
et al. (2003)).
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(a.i) (a.ii) (a.iii)

(b.i) (b.ii) (b.iii)

(c.i) (c.ii) (c.iii)

Figure 12: A family of wrapped non-convex polyhedra. The panels show,
in column (i), the primal polyhedra, the [n]-antiprisms with n = 4, 5, 6, i.e.,
the square, pentagonal and hexagonal antiprisms with f3 = 2r, fr = 2 for
r = 4, 5, 6, respectively; in column (ii), their duals, the [n]-trapezohedra; in
column (iii), the wrapped objects. In the case of the [4]-antiprism (octa-
hedrite 8-1), a convex realisation exists and is shown in Figure 9. For n ≥ 5,
non-convexity makes crinkling unavoidable.
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Figure 13: Wrapping of an icosahedrally symmetric non-convex polyhedron.
The 4-regular polyhedral graph whose dual defines the tiling is the graph of
the icosidodecahedron, with f5 = 12 and f3 = 20.

5 Conclusion

Starting from an analysis of wrappings of one simple highly-symmetric poly-
hedron, the cube, it has been possible to identify infinite classes of potential
wrappings and closed baskets based on convex and non-convex polyhedra.
Some open questions remain, such as the characterisation of the 8-vertex
polyhedra that may appear in wrappings derived from octahedrites: do all
appear as Alexandrov polyhedra of wrappings, and if so, with what symme-
try and geometrical realisation?

Weaving on intrinsically curved surfaces presents technical difficulties,
e.g., the ‘draping’ problem in the manufacture of advanced composite com-
ponents of complex geometry (Hancock and Potter, 2006). Extension of
the present considerations, together with modern tow placement machines
(Rudd et al., 1999) could help in the development of improved manufac-
turing techniques. The present findings already provide a pattern-book for
future artistic and practical endeavours.

Acknowledgements

PWF acknowledges support from the Royal Society/Wolfson Research Merit
Award Scheme. TT and FK are grateful for financial support under OTKA
grant K81146. Prof. R. Connelly is thanked for a helpful discussion on
convexity. We thank M.A. Fowler and Dr A. Lengyel for help with pho-
tographing the models, and Mrs F. Wood for making new weavings and
allowing us to use photographs of her work.

17



References

Brinkmann, G., Heidemeier, O., and Harmuth, T. (2003). The construction
of cubic and quartic planar maps with prescribed face degrees. Discrete
Applied Mathematics, 128:541–554.

Britton, D. and Dunitz, J. D. (1973). A complete catalogue of polyhedra
with eight or fewer vertices. Acta Crystallographica Section A, 29(4):362–
371.

Coxeter, H. S. M. (1969). Introduction to Geometry. John Wiley & Sons,
second edition.

Coxeter, H. S. M. (1971). Virus macromolecules and geodesic domes. In
Butcher, J. C., editor, A Spectrum of Mathematics, pages 98–107. Auck-
land University Press and Oxford University Press.

Deza, M., Dutour, M., and Shtogrin, M. (2003). 4-valent polyhedra with
2-, 3-, and 4-gonal faces. In Advances in Algebra and Related Topics:
Proceedings of ICM Satellite Conference on Algebra and Combinatorics,
Hong Kong, 2002, pages 73–97. World Scientific.
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