Department of Engineering / Profiles / Mr Philip Sitte

Department of Engineering

Mr Philip Sitte


Philip Sitte

Research Student

Academic Division: Energy, Fluid Mechanics and Turbomachinery

Research group: Energy

Telephone: +44 1223 3 32641


Research interests

Turbulent reacting flows; computational fluid dynamics

Research projects

Modelling of turbulent spray flames with the Conditional Moment Closure (CMC) approach.

Low-order modelling and simulation of premixed burner ignition.

Development of the new CMC code Clio for massively parallelised turbulent combustion simulations in a joint project with ETH Zürich.

Teaching activity

IA Thermofluids, supervisor for Fitzwilliam College.

IA Gas engine laboratory demonstration at the Department of Engineering.


Philip Sitte is a Gates Cambridge Scholar and PhD Candidate in Engineering at the University of Cambridge where he is working with Professor Epaminondas Mastorakos. Philip’s research interests are concerned with the modelling of turbulent reacting flows. His current work focuses on numerical simulations and the modelling of turbulent spray combustion using the Conditional Moment Closure method.

Philip holds an MPhil in Energy Technologies from the University of Cambridge, a Diplôme d'ingenieur from Ecole Centrale Paris and an MSc in Mechanical Engineering from Vienna University of Technology. He studied the spark ignition of annular combustors during his MPhil in Cambridge and conducted research on the transition to turbulence at the Institute of Science and Technology Austria during his studies in Vienna.


Giusti, A., Sitte, M.P., Borghesi, G., Mastorakos, E. (2018), Numerical investigation of kerosene single droplet ignition at high-altitude relight condition. Fuel 225, 663-670. DOI: 10.1016/j.fuel.2018.02.102.

Sitte, M.P., Mastorakos, E. (2017), Modelling of spray flames with Doubly Conditional Moment Closure. Flow, Turbulence and Combustion 99, 933-954. DOI: 10.1007/s10494-017-9873-3.

Sitte, M.P., Bach, E., Kariuki, J., Bauer, H.-J., Mastorakos, E. (2016), Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames. Combustion Theory and Modelling 20, 548-565. DOI: 10.1080/13647830.2016.1155756