Future technology opportunities in fluid power

Rob Miller

James Taylor, Tony Dickens, Anna Young, Tashiv Ramsander, Will Playford, Nick Atkins, Anna Young, Carl Sequeira, Judith Farman, Ivor Day, Martin Goodhand Graham Pullan Chris Freeman

Fluid power

Efficiency of modern compressor ~92%

Land based power opportunities

Aviation power opportunities

Bypass Ratio	11+	15+
Overall Pressure Ratio	60+	70+
Efficiency relative to Trent 700	20%+	25%+

- 1. Engine measurements
- 2. Tidal power
- 3. Improving performance through life

Engine measurements

MHI development of land based gas turbines

Measuring temperature in hot section Tashiv Ramsander, Rob Miller

Limitation of current technique

Thermocouples (Flame radiation error, drift over 1200K, recovery factor)

New technique

- Measuring temperature using a sonic orifice.
- 2nd order radiation and recovery factor error

DLR Cologne testing T= 1950K

Measurement technique

- Accuracy of ±0.5% (10K)
- Operation up to 25 bar 2350K+

DLR Cologne: Comparison of techniques

- 1) Two designs of sonic aspirating probe agree to <0.5%.
- 2) Sonic aspirating probe and OH-PLIF (uncertainty 2.7%) agree to 1.6%.

Measuring boundary layer state Will Playford, Nick Atkins

Turbulent boundary layers dissipate kinetic energy at a rate 2-5 times higher than laminar boundary layers

- Turbulent boundary layer has much lower thermal resistance
- Addition of a thin layer of insulation we can 'see' the boundary layer state

Engine instillation

coating

Engine instillation

Measurements of boundary layer states

Opportunities to help

- 1. Mounting gauges directly on blade surface
- 2. Thin insulative blade coatings
- 3. High temperature sensor

- 1. Engine measurements
- 2. Tidal power
- 3. Improving performance through life

Tidal power

Anna Young, Carl Sequeira, Judith Farman, Rob Miller, Ivor Day, Chris Freeman

Testing IFREMER France

2010 Rolls-Royce University Technical Centre in Tidal Turbine Hydrodynamics

2014 Alstom University Technical Centre in Tidal Turbine Hydrodynamics

UK resource estimated to be capable of producing 20-30% of UK electricity production

UK Tidal Current Resource & Economics Carbon Trust & Black and Veatch 2011

Challenge

Verdant Power

Blade off and bent 1 day of operation OpenHydro

Blade off Unknown operating time Atlantis

Cracks in blade Without even operating

Unsteady blade loading

Comparison with wind turbine - 1Mw

5 4.5 4 3.5 3 □ Wind Factor 2.5 Tidal 2 1.5 1 0.5 0 Size (linear) Thrust Torque

Differences to Wind

Comparison with wind turbine - 1Mw

Take-off thrust of Trent XWB is 430kN

Unsteady load alleviation

Low frequency unsteadiness – Low inertia drive train/Generator High frequency unsteadiness – Load shedding

Unsteady load alleviation: Lift shedding

Testing IFREMER France

Lift shedding

Device operated at 0.55Hz

Opportunities to help

- 1. How can turbulence be measured in the sea?
- 2. How can unsteady loading be accurately predicted in preliminary design?
- 3. How can unsteady load be alleviated?
- 4. Trip or flap mechanisms which will operate in sea environments?

- 1. Engine measurements
- 2. Tidal power
- 3. Improving performance through life

Improving performance through life

Martin Goodhand, Rob Miller

Rolls-Royce predicts aftercare services will be worth US\$700 billion over the next 20 years.

Aviation Week 2015 'A 2009 Trent 700 Enhanced Performance (EP) kit is proving popular with airlines, improving efficiency by 1%'

What's it worth? Whole fleet saving, \$180 million per year

- 1500 Trent 700's in-service
- 1% fuel burn worth \$240k per aircraft per year

Aviation Week 2015 'EP kit includes elliptical leading edges on compressor blades and super-polish of high and intermediate-pressure turbine blades'

Impact of leading edge highly non-linear

25% reduction in blade loss

How to tolerance geometry 'detail'?

Historically ~10 measurement points a section

Optimal scanners on production line

Drop forged

ECM

Impact of roughness highly non-linear

Roughness close to endwall causes 180% in endwall loss

How to tolerance in-service roughness

In-service roughness varies through engine

Which areas of roughness change cause a non-linear change in performance?

Opportunities to help

- 1. How should we tolerance blade geometry?
- 2. New types of coating (hardness, deposition resistance)?
- 3. Can new material allow thinner blades (current limit ~0.5mm)?
- 4. Can new manufacture techniques allow more precise geometry for the same unit cost?

- 1. Engine measurement
- 2. Tidal power
- 3. Improving performance through life

Rapid concept testing James Taylor, Tony Dickens, Rob Miller

Rapid prototyping has cut testing time from 4-6 months to 2-4 days.

<u>Open – Access to Research stage & Disassembly</u> Rig splits at research stage. Research stator Research rotor

Single stage compressor