

www.sustainableroadfreight.org

Towards Sustainable Road Freight

First Cambridge Workshop on Energy, Transport and Urban Infrastructure

David Cebon

Centre for Sustainable Road Freight September, 2015

D. Cebon 2015

Life without Lorries: Sustainable? Collapse of economic and welfare systems

Groceries Beer Fuel Healthcare Banking Postal / parcel services Waste disposal

Day 1	Day 2	Day 3	Day 4	Day 5
All movements of lorries over 3.5 tonnes cease at	Supermarket stocks of many perishable / short	Most petrol stations run out of fuel	Petrol stations run dry	Half of the car fleet without fuel
12am	shelf-life product run		Most of the manufacturing	
	out, including bread,	Around 15% of the car	sector shut-down	Large proportion of the
Most mail services and	milk and eggs	fleet without fuel		labour force laid-off or
parcel deliveries stop			Most non-electrified rail	unable to travel to work
	Milk disposal on farms	Supermarket stocks of	services suspended	
No newspapers		fast-moving grocery		Retail stocks of most
	More manufacturing in	lines exhausted	Serious cash shortages	grocery products
Manufacturers operating	low-inventory sectors			exhausted
on a just-in-time basis	closes down	Introduction of rationing	Bus companies reduce	
suspend operations		for fuel and some food	off-peak frequencies,	Almost all manufacturing
	Shortage of cash in	products	esp. in rural areas	closed down
No supplies of fresh	banks and ATMs		·	
produce in grocery		Fast food outlets close	Gas and water utilities	Severe disruption of the
outlets	Construction work		disrupted by lack of fuel	health service
	ceases on most building	Widespread lay-offs from	and spare parts	
	sites	manufacturing sector		Serious problems from the
		5	Congestion at ports stops	accumulation of waste
	Growth of farmers'	Busier pubs run out of	off-loading of vessels	
	markets	beer	j	Range of non-food products in shops substantially
		Slaughter of poultry on farms		depleted

McKinnon et al, 2004 (Based on data from disruptions to UK road haulage in 1979 and 2000) D. Cebon 2015

Fuel Consumption Model

D. Cebon 2015

• (Extensive programme of parameter measurement with instrumented vehicle for validation)

Simu	lated Vehic	cles	GVW (t)	Payload (t)	Payload (%)	Power HP
		Rigid	26	16	63	206
		Single	44	29	66	336
	E 200 00	B-double	60	39	66	425
		A-double	82	58	71	425

BoM Analytics

Typical Power Profile: Tractor-semitrailer, Max speed 56mph

Effect of Vehicle Configuration, Motorway (56mph max)

Benefits of Long Combination Vehicles

Performance Measure	Reduction due to LCVs
Freight movements and overall truck-kms	44%
Overall shipping costs	29%
Fuel consumption / greenhouse gas emissions	32%
Road wear	40%

Source: Woodrooffe, J. and L. Ash, *Economic Efficiency of Long Combination Transport Vehicles in Alberta*. 2001

ע. כפטטה 2015

Durchschnittlicher Testverbrauch

D. Cebon 2015

Barriers to mainstream adoption (Technical, Economic, Political)

- 1. Lorries are essential for modern living
- 2. For environmental reasons, they need to get bigger
- 3. Social change is necessary...
 - Re-timing of deliveries
 - Acceptance of larger vehicles on long-haul operations
 - Home deliveries
 - · · · · ·
- 4. Lack of sensible public debate is highly detrimental.

D. Cebon 2015

www.sustainableroadfreight.org

Introduction to Centre for Sustainable Road Freight

Heriot Watt University

Prof Tooraj Jamasb Prof Alan McKinnon Dr Andrew Palmer Dr Maja Piecyk (PI) Dr Guy Walker

Cambridge University

Prof Holger Babinsky Dr Adam Boies Prof David Cebon (PI) Dr David Cole Prof Nick Collings Prof Nick Kingsbury Dr Michael Sutcliffe

For more information contact: Prof David Cebon: <u>dc@eng.cam.ac.uk</u> Dr Maja Piecyk: <u>m.piecyk@hw.ac.uk</u>

11 July 2013

Aims

- 1. Develop a comprehensive programme of research on the opportunities for improving the environmental sustainability of road freight transport:
 - Meet Corporate and Government emissions reduction targets for the road freight sector
 - 80% reduction in CO2 emissions due to road freight transport by 2050.
- 2. Develop innovative technical and operational solutions to road freight challenges
- 3. Tackle the environmental, economic and social issues triple bottom line approach
- 4. Establish close links with all the main stakeholders in the road freight sector: a stable, long-term research collaboration
- 5. Help members decarbonize their operations
- 6. Provide policy advice

•	of Research ramme	Technology	Operations	Policy
	Future Mapping		*	
Core Activities	Maximising Impact	*	*	*
	Research Portfolio Management	*	*	*
Data Managamant	Driver Skills & Training		*	*
Management, Scenario Analysis	Traffic Congestion	*	*	
& Decision	Carbon for Money Tool		*	
Support	Integrated Logistics Dataset		*	*
	Reconfiguration of SC Networks		*	*
Optimising Long Haul	Lightweight Trailers	*		
Transport	Aerodynamic Improvements	*		
	Reduced Rolling Resistance	*	*	
	Alternative Fuels	*		*
Sustainable	In-cab Feedback & Driver Behavio	our 🔺		
Urban Freight	Low-energy Delivery Vehicles	*	*	
	Improved Urban Logistics	*	*	*
	In-service Data Collection	*	*	

Some Research Highlights...

Dynamometer testing of Diesel-CNG dual fuel vehicle performance and emissions

PATH FOLLOWING STEERING SYSTEM

Active Trailer Steering: An enabling technology for higher capacity vehicles. IP licensed to Consortium partner

driving: identification of modern and future training needs from a new perspective

GPS W

Hydraulic regenerative braking system for urban delivery vehicles

More Research Highlights..

_			5	treamwise	e Velocity (u/u)			
5	10	12		-	5. B.				
	1 1-	1							
5	1	2	3	4	5	6	7	8	9
					e Position Velocity (
	-8-			1954	18	THE	>	stalicity.	al a constant
	0	्र)))				10-		
5	-hr	1-11	VALL	119	y v	THO	- Part		_
		2	3		5	6	7	8	9

Measurement of vehicle underbody flows and effects of interventions

collaboration. Data from 10 fleets over 1 month

Aerodynamic improvements on in-service test trailer

Trailer light-weighting: geometry optimisation of steel chassis beams

Methods for characterising vehicles and measuring benefits of interventions

- 1. Improve engine and drive-train efficiencies; reduce rolling resistance and aerodynamic resistance → save up to 5%
- 2. Driver training → save up to 10% (must be maintained)
- 3. Reduce unladen mass → Save up to 10%
- 4. Reduce traffic congestion
 - → reduce fuel consumption (and CO₂) by up to 50%
 - use higher capacity vehicles for the same freight task
 - eliminate night-time curfews on freight deliveries
 - optimise traffic control
 - reduce accidents and delays from road maintenance
 - Improved vehicle routing
- 5. Change logistic patterns:
 - Never come home empty \rightarrow save up to 40%
 - Use tractor-semitrailer instead of 2 rigids → save 35% (Trailer axle steering provides the increase in manoeuvrability needed to do this in urban areas)
 - Use longer vehicles (eg 2 trailers) 🗲 save 10-20%
- 6. Regenerative braking (hybrids) → save 25%
- 7. Alternative Fuels CNG and Biogas...

D. Cebon 2015