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Force= q1q2/4πεor
2  

Define	a	field	E=	q/4πεor2
Potential	ϕ=q/4πεor

E=-grad(ϕ)
Force	on	q	from	many	charges=qE

where	E	is	the	sum	of	the	fields	due	to	all	other	charges.
(this	only	works	because	free	space	is	linear).

The	field	is	an	artificial	concept	which	simplifies	the	calculation	of	the	
forces	on	charges.	One	value	of	the	field	can	describe	the	force	from	

many	different	arrangements	of	charge.

However	like	many	such	introductions	it	has	gained	a	physical	meaning	in	
subsequent	developments.

Why	do	we	Use			Fields?

The	starting	point	is	the	law	of	force	between	charges



NaCl
1kg

Cl-

Na+

1000	km

We	separate	1kg	of	salt	into	sodium	ions	at	
Cape	Wrath	and	Chlorine	ions	in	Dover.	
Could	we	detect	the	force	between	them?

How	strong	are		electrostatic	forces?



Yes
It	is	28,000	million	tonnes.		Electrostatic	forces	are	very	strong.		They	hold	us,	

and	the	universe,	together	on	an	atomic	scale.

On	the	other	hand	magnetic	Forces	are	very	weak.

V
- -- -

+ ++ +

Consider	two	long	lines	of	charge,	density	ρ,r	apart	
one	is	moving	with	velocity	v.

The	electrostatic		force	between	them	is	ρ2/2πεor.

However	since	one	is	moving	there	is	a	small	relativistic	correction	
by	a	factor	1- v2/c2.

This	correction	is		(ρ2/2πεor)v2μoεo =(ρv)2μo/2πr=i2μo/2πr

This	is	the	magnetic	force	between	the	two	currents.
Since	all	our	systems	are	electrically	neutral	we	do	not	see	the	electrostatic	force,	only	

the	magnetic	one.

Since	the	drift	velocity	of	the	electrons	in	a	mains	wire	carrying	13A	is	about	1	
micron/sec	this	correction	is	about	1	part	in	1024 and	yet	this	is	what	we	use	to	drive	

Eurostar	trains,	rather	than	electrostatic	forces.	
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δr

a q

Dipole	potential
ϕ=-q/4πεor+q/4πεo(r-δr)

=q	δr		cos(θ)/4πεor2
=p	cos(θ)/4πεor2

Where	p=qa the	dipole	moment.

E=-grad(ϕ)

Single	charges	are	rare	and	dissipate	quickly	and	monopoles	are	even	rarer.
The	fields	we	measure	must	be	approximated	by		dipoles.



Forces	on	Electrical	Currents

It	is	found	that	the	the	forces	between	small	current	loops	are	identical	to	
those	between	electrostatic	dipoles	if	we	define	the	dipole	moment	as

mδ=i.δS
Where	i is	the	current	and		δS		the	area

We	define	a	magnetostatic	potential	ψ as
Ψ=m	cos(θ)/4πr2

Then	define	a	field	B	as
B=μo grad	ψ and	the	force	on	a	current	I	is	then		=	B.I/length

The		μo appears	rather	unnaturally	in	the	development	for	historical	
reasons	,	but	this	just	so	that	we	get	the	right	units	in	Maxwell’s	equations	

at	the	end.		There	is	only	one	field	which	can	be	called	either	B	or	H.	
They	differ	only	in	a	factor	μo according	to	whether	we	put	them	in	Tesla	or	

Amps/m	

δs
i



Faraday’s	notes

Lines	of	Force

Since	the	dipole	field	is	based	on	the	inverse	square	law	we	can	apply	
Gauss’s	theorem	and	draw	continuous	lines	of	force.			



Flux	lines	in	superconductors



Although	a	good	illustration	this	is	surprisingly	difficult	to	explain



Maxwell’s	Picture	of	the	magnetic	field	used	‘vortices’



Field	Equations	for	B	in	Free	Space

From	these	definitions	a	little	algebra		shows	that	

 
B.dS = 0!∫

and	

 
B.dl = µoI!∫

Gauss’s	theorem

Ampere’s	circuital	theorem

These	are	only	useful	in	simple	geometries.		Integral	
equations	are	very	difficult	to	solve.	

By	applying	these	equations	to	small	loops	Maxwell	got	
local	relations	in	the	form	of	differential	equations.

Div(B)=0				and	Curl(B)=μoJ



Magnetic	fields	in	materials,	(not	superconductors)

Magnetic	materials	are	full	of	magnetic	dipoles	on	an	atomic	scale	so	we	need	to	
average.

We	define	B	in	a	material	as	the	average	of	the	local	B	on	an	atomic	scale,	b.

Averaging	Gauss’s	theorem	div(b)=0	gives	div(B)=0.

Averaging	curl(b)=μoJ		is	more	problematical		and	will	be	done	in	two	ways.

The	first	shows	how	a	magnetic	array	can	be	replaced	by	equivalent	currents.		This	is	a	
very	useful	construction.

We	first	define	the	second	fundamental	field,	the	magnetisation.



Magnetic	materials	consist	of	spinning	electrons	and	orbiting	electrons	each	of	which	
behaves	as	a	dipole	at	distances	large	compared	with	the	size	of	an	atom.			The	local	
magnetisation	M is	defined	as	the	sum	of	the	magnetic	moments	over	a	small	volume,	

divided	by	the	volume,	the	mean	magnetic	moment	per	unit	volume

M = m /δV∑

The	distance	over	which	we	we	average	is	normally	large	compared	with	the	
microstructure	but	small	compared	with	the	sample	size.	

The	vector	fields	B and	M are	the	fundamental	fields	in	materials.

Magnetisation

(compare		charge	density	ρ=∑q/δV)



Equivalent	Currents

Consider	an	array	of	square	dipoles	of	side	a space	d	apart		
carrying	a	current	i in	layers	d apart	normal	to	the	paper

The	magnetisation	M=ia2/d3	A/m.
This	is	an	array	of	solenoids	with	current	density	id	A/m.

The	local	b in	each	is	μoi/d	and	zero	outside	so	the	average	is		B=(μoi/d	)(a/d2)=μoM

This	is	the	standard	result	for	B in	a	long	thin	magnet.
This	illustrates	that	at	least	for	a	simple	array	B	is	the	average	of	the	free	space	field

i

a

d

A	dipole	array



Now	multiply	the	edge	length	by	d/a and	divide	the	current	by	(d/a)2.

This	keeps	the	magnetisation	the	same	but	now	the	internal	currents	
cancel	and	can	be	removed	leaving	a	surface	current		I=ia2/d2 in	each	

layer	or		ia2/d3 =M	Amp/m	on	the	whole	surface.
This	also	has	the	same	average	B.	

We	can	get	the	same	B	every	where	if	we	replace	the	magnetisation	
by	an	equivalent	surface	current	M	A/m.	

In	general	it	is	the	parallel	component	of	M		

(1	Amp/m=1/μo Tesla)	



Jy = δ i d
2 / a2( ) / a2 = −dMz / dx

This	was	for	a	uniform	magnetisation
If	M		is	changing,	with	x	for	example	

i i+δi i+2δi

Increase	size	while	keeping	M	the	same
i

δi δi

This	is	one	component	of	the	general	equation		curl(M)=J
Note	that	this	J	is	only	magnetisation	currents,	transport	currents	are	separate	and	can	be	

added	on.

Thus	a	uniform	magnetisation	can	be	replaced	by	a	surface	current.
A	non-uniform	magnetisation	needs	a	bulk	current	density	as	well.

These	currents	in	free	space	give	the	same	flux	density	B	as	in	a	magnetised	the	material.



A	More	General	Derivation

Fig.A3

dS

The	figure	shows	a	random	array	of	dipoles	in	a	
thickness	δl	projected	onto	the	xy	plane.
A	line	perpendicular	to	this	intersects	the	plane	
at	the	black	dot.

Ampere’s	theorem	∲	b.dl=μoI
Averaging		∲	B.dl=μoI̅
where	I̅	is	the	mean	current	intersected	

We	need	to	work	out	the	mean	current	intersected	by	the	line	of	length	δl.
The	probability	of	intersecting	a	particular	dipole	is	δS/A	where	δS is	its	area	and	A
the	area	of	the	array.		The	mean	current	contributed	is	i δS/A	where i is	the	current	
in	the	dipole.
The	total	of	the	array	is		∑ i δS/A=Mδl	 where	M is	the	magnetisation.
If	we	add	the	magnetisation	currents	Mδl and	a	transport	current	I	in	Amperes	
relation	we	get

∲ B.dl=μo∲M.dl+μoI

This	is	really	all	we	need.			It	is	Ampere’s	equation	in	a	magnetic	material.
Combined	with	the	material	property	M(B)		the	field	equations	can	be	solved.



Experimental	Justification

There	is	a	small	number	of	experiments	which	show	that	B is	the	average	of	the	local	
field.				We	need	a	charged	particle	which	is	going	so	fast	that	it	is	not	deflected	by	
atomic	charges.		Rasetti (1)	used	cosmic	ray	mesons.			Hughes	(2)	used	neutrons.		

Both	are	much	bigger	than	electrons.	To	sample	the	mean	field	the	complete	meson	
must	pass	through	the	the	centre	of	the	electron!	

Fig.A3

dS

m
Electron

Mesone

Apparently	it	does,	the	full	theory	needs	the	Dirac	electron	theory	(3).

More	recently	muon	spin	decay	has	been	used	to	map	local	fields	in	
superconductors.		This	works	on	the	scale	of	the	penetration	depth,	but	not	for	B	
in	iron.		The	muons	prefer	to	congregate	at	the	sides	of	atoms	where	the	field	is	

more	like	H	than	B,	but	not	equal	to	either.	

1).F.Rasetti,	Phys.Rev.	66	,1	1944.
2)	D.J.Hughes,	Pile	Neutron	Research,	Addison	
Wesley,	1953	sections	11-4		and	10-6.
3) G.H.Wannier,	Phys.Rev.,	72,	304	1947



Surface currents M A/m

B=μoM  T

M B=½μoM  T

M

Two	half	magnets	must	add	up	to	one	whole	one

Normal	surface	field	is	uniform	and	half	central	field
(However	the	radial	field	is	maximum	at	the	edges	and	there	is	a	singularity	in	the	

magnitude	of	B)

NdFeB makes	things	very	easy.		M	is	constant
(In	data	sheets	it	is	the	‘Remanence’/μo=1-1.5T)

Here	are	two	examples

Long	thin	magnet

Equivalent	currents
Long	solenoid	formula



YBCO

M

YBCO

YBCO

d

Surface Current Md

h

Force=2πR(Md)2/2πμoh

Disc Magnet Radius R

Pressure=(Md)2/2πμohR

Image Magnet

Levitation

The	magnet	is	repelled	by	its	image	in	the	superconductor.
The	Pressure	goes	to	zero	for	large	diameter.		We	need	to	subdivide	the	magnets.



Ampere	in	material		∲ B.dl=μo∲M.dl+μoI

That	is	the	all	the	electromagnetism	we	need,		and	we	have	not	needed	an	H	or	a	
permeability,	μ.

However	it	is	convenient	to	define	a	new	vector	H	as	

H=B/μo-M.

Then	substituting	for	M

∲ H.dl=I

What	Maxwell	did	was	to	apply	this	to	a	small	loop	and	turn	a	definite	integral	into	a	
differential	equation

curl(H)=J

It	is	usually	more	convenient	to	use		B(H)rather	than	M(B)		on	solving	equations	but	the	two	
are	equivalent

In	practical	superconductors	there	are	no	magnetic	dipoles	so	M=0	and	B=μoH.
(but	see	Evetts theory)

The	Field	H



What	is	Magnetisation?

The	term	has	several	meanings,	which	must	be	kept	clear.

So	far	it	is	a	local	vector,	the	average	density	of	magnetic	dipoles	in	the	same	way	that	
charge	density	is	the	density	of	single	charges.		It	is	only	in	this	sense	that	B=μo(H+M),

but	remember	this	is	the	definition	of	H,	not	B.		It	allows	us	to	separate	the	currents	due	
to	dipoles	from	those	due	to	transport	currents.				It	can	be	applied	to	superconductors	
using	the	Evetts theory,	not	discussed	here,	but	this	is	not	of	practical	significance.

We	can	also		define	the	total	magnetic	moment	of	a	body
Mo=½∫rxj	dv.

This	can	only	be	defined	for	an	isolated	body	with	no	currents	flowing	in	or	out.		However	
it	includes	eddy	currents	and	currents	in	superconductors.			It	determines	the	distant	

magnetic	field	from	any	body	and	is	what	a	SQUID	magnetometer	measures.			If	divided	
by	the	volume,	or	for	a	body	of	unit	volume,	it	is	also	called	magnetisation,		but	don’t	

confuse	the	two	definitions		They	can	be	quite	different.

For	currents	in	a	plane	we	can	integrate	the	current	loops	to	find	Mo.



Some	Special	cases
If	there	are	no	macroscopic	transport	currents	

Total	moment												Mo=∫M	dV

If	we	have	a	long	thin	cylinder	in	a	parallel	field	Bo		then	M	is	the	
difference	between	the	external	field	and	the	mean	flux	density.	

Bo  Ext. Field

B  

μoM

0

Long thin ferromagnet.
No currents.
Mo=MV
H=Ho=Bo/μo

B=μoH+μoM

Bo  Ext. Field
B μoMo/V

2a

Long thin cylindrical superconductor.
Pinned transport currents.
M=0
Mo/V=1/3	Jc	a

B=μoH
dB/dr=μodH/dr=μoJc

 



The	Applied	Field	Ho

The	applied	field	can	only	be	defined	for	an	isolated	body.	It	is	the	field	in	the	space	left	by	
the	body	if	it	is	removed,	and	all	currents,	including	all	magnetisation	currents,	except	those	
of	the	body,	are	kept	constant.		It	must	be	done	this	way	round,	rather	than	by	adding	the	
body	to	an	existing	field,	as	a	magnet	near	a	permeable	material	experiences	an	applied	
field	due	to	its	image,	which	must	be	preserved	when	the	body	is	removed.		(However	in	
simple	geometry	the	applied	field	is	also	the	field	a	long	distance	from	a	body).
Many	problems	involving	forces	and	energies	are	much	more	easily	tackled	using	the	
applied	field	Ho and	the	total	magnetic	moment	of	a	body,	Mo, rather	than	the	local	values	H
and	M or	B which	must	be	integrated	over	all	space	(see	the	section	on	energies	and	forces).		
This	is	because	we	can	express	the	work	done	on	a	system	in	terms	of	Mo and	Ho,	whereas	
to	find	the	energies	we	need	to	integrate	fields	over	all	space	which	is	algebraically	
intractable.
In	some	geometries	the	external	and	local	values	are	the	same,	but	it	is	nevertheless	
extremely	important	to	make	clear	which	are	being	used.



Material	Properties		,	B(H)	curve

Ho

Search coil gives flux

nI A/m Apply	an	external	field	Ho=Bo/μo=NI	
and	measure	flux	with	a	search	coil.
We	need	a	very	long	thin	uniform	
sample,	or	better	a	toroid.

Experiment General	Material	Property
,	B(H)	curve.
This	true	in	all	circumstances

Relabel	Axes
B=ϕ/Area
H=Ho

Since	there	is	no	transport	current	on	the	surface	H	in	material	=Ho

H

B
Slope μoH M sat

H

M

M=B/μo-H
M	sat	about	3	Bohr
Magnetons/	atom

Ho

ϕ



Demagnetising	Effects

Most	undergraduate	courses	start	with	linear	materials	and	go	on	to	non-
linear	and	hysteretic	materials	as	a	special	case.		This	is	a	big	mistake.		Once	
undergraduates	get	the	idea	that	B=μμoH is	a	fundamental	equation	they	
will	never	understand	the	subject.			The	reason	is	that	the	application	of	an	

external	field	leads	to	a	magnetisation,	which	then	adds	a	field	to	the	
applied	one.		There	is	a	large	amount	of	feedback	and,	as	always,	this	leads	

to	counterintuitive	results.	

In	this	respect	electromagnetism	differs	from	mechanics,	elasticity	or	
thermodynamics.

The	effects	may	be	described	as	‘Demagnetising	Effects’.



M
r
θ

j=M sin θ

B=2μoM/3

M

B=2μoM/3

H=-M/3

Start	with	a	uniformly	magnetised	sphere,	magnetisation	M.

Replace	with	equivalent	surface	currents	M	sinθ/length.
Find	B	at	the	centre	from	Biot Savart Law	.(In	fact	B	is	uniform)

B=2μoM/3	(same	direction	as	M)
Then	H=B/μo-M=-M/3.	

The	1/3	is	the	demagnetising	factor,	n,	for	a	sphere.	

We	see	B=-2μoH
If	we	draw	a	line	of	this	slope	on	the	B-H	curve	we	find	the	effect	of	demagnetisation

The	general	definition	of	n	is	from			H=-nM +Ho

Demagnetising	factors

Material									Free	space	Currents					Fields	in	Material



B

H

B=-2μoH

This	allows	us	to	determine	the	magnetisation	of	a	permanent	magnet	
from	the	B-H	curve.

From	the	equivalent	currents	above,	for	a	magnetised	sphere	B=-2μoH.
Where	the	line	of	slope	-2μoH intersects	the	B-H	curve	we	get	the	B	and	

hence	M	allowing	for	demagnetisation.

This	limited	the	magnetisation	of	permanent	magnets	before	the	
invention	of	NdFeB.

Previously	permanent	magnets	had	to	be	long	and	thin,	or	inserted	in	a	
long	high	permeability	magnetic	circuit.



Linear	Materials

In	some	materials	the	orientation	of	dipoles	is	proportional	to	the	field	on	them	so	that	
all	fields	are	linearly	related.

We	write	M=χH	where	χ is	defined	as	the	susceptibility,	a	material	parameter.	
Then	B=μrμoH where	 μr=1+χ and	is	called	the	relative	permeability.

Materials	are	either	ferromagnetic,	in	which	case	μr and	χ are	large	and	nearly	equal	
(>300),

or	they	are	not	,	in	which	case		χ is	small	<10-5,	μr∼1	and	B∼μoH

In	ferromagnetic	materials	demagnetising	effects	are	extremely	important.

Consider	an	ellipsoid	of	demagnetising	factor	n	in	a	uniform	external	field	Ho
Then	H=Ho-nM and		M=χH.

M=χHo/(1+nχ).

For	non	ferromagnetic	M=χHo
For	a	ferromagnet	M=Ho/n.

e.g.	for	a	sphere	M=3Ho independent	of	permeability
Only	for	very	long	thin	samples	parallel	to	the	field	does	M	become	large.	

Magnetic	forces	on	ferromagnetic	bodies	are	usually	independent	of	the	permeability
The	magnetisation	is	of	the	same	order	as	the	applied	field



What	is	H?

It	is	easier	to	say	what	it	is	not.		Here	are	some	‘explanations’	which	
are	at	best	of	very	limited	application

1)	H	is	the	‘external	field’.		
Only	in	a	long	thin	sample	parallel	to	a	uniform	external	field	with	no	

currents	flowing	is	H	in	the	material	equal	to	Ho.

2)	The	‘H’	produces	a	‘B’	or	an	‘M’.
This	is	a	meaningless	statement.		It	is	like	saying	a	‘stress’	produces	a	
‘strain’	or	a	‘voltage’	produces	a	‘current’	when	frequently	it	is	the	

other	way	around.		In	all	these	cases	it	is	an	artefact	of	the	
experimental		setup	and	depends	on	the	rigidity	or	source	

impedance	of	the	apparatus

3)	H	is	the	‘stray’	field.
I	had	some	difficulty	working	out	what	this	means.		I	think	it	refers	to	
a	long	thin	permanent	magnet	where	the	field	just	outside	the	centre	

of	the	magnet	is	equal	to	H	in	the	magnet.		This	is	not	a	useful	
concept.



4)	‘H	is	the	field	due	to	transport	currents	without	the	effect	of	magnetisation’.
If	this	were	true	we	could	throw	away	all	our	finite	element	packages	as	the	field	from	

transport	currents	can	be	found	from	the	Biot Savart law.		Although	cur(H)=J	the	
solutions	of	this	equation	are	multiple	and	we	need	more	information.	

5) H	is	the	‘internal	field’	.
‘Internal	field’	is	not	usually	defined,	but	the	field	in	a	material	varies	widely	on	an	

atomic	scale	so	this	is	a	meaningless	definition.

6) ‘The	H	field	determines	the	force	on	currents	and	the	B	field	the	induced	voltage’.		
This	probably	had	its	origins	in	the	nineteenth	century	when	it	was	only	gradually	

becoming	clear	that	the	same	field	in	free	space	determined	both	the	force	on	a	current	
and	the	induced	voltage.			That	there	was	no	difference	was	finally	proved	by	the	theory	

of	relativity.
Extending	this	idea	to	fields	in	a	material	is	complete	nonsense.		It	was	largely	based	
on	the	idea	of	defining	fields	by	the	forces	on	bodies	in	magnetic	fluids	which	led	to	

different		macroscopic	formulations	by	Sommerfeld and	Connelly.		This	controversy	is	a	
pointless	argument	only	of	interest	to	historians	of	science.

The	forces	on	bodies		in	fluids	are	apparently	simple	but	in	fact	are	a	complex	
combination	of	hydrostatic	and	electromagnetic	forces.		In	solids	they	become	tensors	
and	are	even	more	complicated	and	involve	not	only	the	fields	but	the	rate	of	change	of	

permeability	with	stress.						



+-

E

p

m

Electric	dipole.		
E	in	opposite	direction	to	p

Magnetic	Dipole
Mean	field	parallel	to	m

Atomic	Scale	Interpretations	

A	major	difference	between	electrostatic	and	
magnetic	dipoles	is	the	direction	of	their	mean	field

6)	‘H		is	the	mean	field	along	a	line	which	
does	not	intersect	any	dipoles’.
This	true	,	but	not	particularly	illuminating.	



7) ‘H	is	the	field	on	a	dipole	tending	to	demagnetise	it’.
There	is	some	truth	in	this,	but	it	is	far	from	the	whole	story.

The	field	applied	to	the	central	dipole	in	this	
array		(	and	to	all	the	others	in	a	large	array)	
is	in	the	opposite	direction	to	m	and	so	tends	
to	demagnetise	it.
However	this	neglects	the	field	due	to	the	
surface	current	of	the	sample	which	is	taken	
into	account	in	the	Lorentz	theory.	
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Lorentz	Theory	

Lorentz	showed	that	the	field	of	dipoles	within	a	sphere	in	symmetric	crystals	
summed	to	zero.			Hence	the	field	on	an	atom	is	the	field	due	to	surface	

currents		on	the	sphere	round	it	,	+1/3	M.		To	this	must	be	added	the	field	due	
to	surface	currents	on	the	sample	surface.	

Here	the	field
Demagnetises	a
dipole.	
The	sample
surface	currents	
Give	a	field<-M/3

Here	there	is	no	field	
on	the	atom.
Fields	due	to	the	two	
surfaces	are	+	and	–
M/3.
However	H=-M/3

Here	the	field	reinforces	
the	magnetisation	
although	H	is	in	the	
opposite	direction	to	M.
The	sample
surface	currents	
Give	a	field>-M/3

However	in	all	cases	H=-nM



Thermodynamics

The	discovery	of	superconductors	required	a	rethink	of	what	we	mean	by	H	and	M	in	a	
material.

The	answer	was	provided	independently	in	slightly	different	ways	by	Josephson	and	
Evetts.

Brian	Josephson	considered	materials	in	thermodynamic	equilibrium	and	defined	H as	
the	gradient	of	the	free	energy	w.r.t.	to	B.		i.e.	by	δF=H.dB

Jan	Evetts defined	H in	superconductors	by	H(B)=	external		field	in	equilibrium	with	B.	
i.e H(B)	is	the	Abrikosov	curve	and	M	the	reversible	Abrikosov	magnetisation.

H	can	be	regarded	as	the	chemical	potential	of	a	flux	line	per	unit	length	and	since	
curl(H)=J	the	curl	allows	for	the	line	tension.

This	is	a	very	beautiful	piece	of	physics,	but	since		M	is	so	small	it	can	usually	be	ignored	
in	high	κ materials.

Both	treatments	bring	out	the	real	nature	of	H	which	is	to	indicate	the	degree	the	system	
departs	from	thermodynamic	equilibrium.



Summary

We	define	the	field	of	a	dipole	in	free	space	so	that	it	gives	the	correct	forces	on	currents.

With	a	bit	of	algebra	this	leads	to	Gauss,	Ampere	and	Maxwell’s	equations	in	free	space.

We	define	B	as	the	average	of	the	microscopic	field		and	M	as	the	dipole	moment	per	unit	
volume.

We	divide	currents	into	magnetisation	currents	curl(M)	and	transport	currents.

Then	Ampere	becomes	∲ B.dl=μo∲M.dl+μoI

Define H=B/μo-M.			Then curl(H)=J

Always	make	sure	to	to	distinguish	between	the	local	magnetisation	M	due	to	magnetic	
dipoles	and	the	total	magnetic	moment	Mo which	will	include	eddy	and	pinned	macroscopic	

currents.
Also	distinguish	between	the	H	in	the	material	and	the	external	field	Ho

.


