23. Synthesis of carbon nanotubes and graphene for VLSI interconnects.
J Robertson, G Zhong, S Esconjauregui, C Zhang, S Hofmann.
Microelectronic Engineering, In Press.
22. Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics.
S Eslava, L Zhang, S Esconjauregui, J Yang, K Vanstreels, M Baklanov, E Saiz.
Chemistry of Materials 25, 27 (2013).
21. The phase of iron catalyst
nanoparticles during carbon nanotube growth.
C Wirth, B Bayer, A Gamalski, S Esconjauregui, R Weatherup, C Ducati, C Baehtz, J Robertson, S Hofmann.
Chemistry of Materials 24, 4633 (2012).
20. Catalyst design by cyclic deposition: nanoparticle formation and growth of high-density nanotube forests.
S Esconjauregui, M Fouquet, R Xie, R Cartwright, S Newcomb, J Robertson.
Physica Status Solidi B 249, 2428 (2012).
19. Chemical vapor deposition of carbon nanotube forests.
J Robertson, G Zhong, S Esconjauregui, C Zhang, M Fouquet, S Hofmann.
Physica Status Solidi B 249, 2315 (2012).
18. Plasma stabilisation of
metallic nanoparticles on silicon for the growth of carbon nanotubes.
S Esconjauregui, C Cepek, M Fouquet, BC Bayer, AD Gamalski, B Chen, R Xie, S Bhardwaj, C Ducati, S Hofmann, J Robertson.
Journal of Applied Physics 112, 034303 (2012).
17. Growth of single-walled nanotubes with control of chirality and abundance.
M Fouquet, B Bayer, S Esconjauregui, C Baehtz, S Hofmann, J Robertson.
Physics Review B 85, 235411 (2012).
16. Applications of Carbon
Nanotubes Grown by Chemical Vapor Deposition.
J Robertson, G Zhong, S Esconjauregui, BC Bayer, C Zhang, M Fouquet, S Hofmann.
Japanese Journal of Applied Physics 51, 01AH01 (2012).
15. Catalyst design for the growth of highly-packed nanotube forests.
S Esconjauregui, M Fouquet, BC Bayer, C Ducati, J Robertson.
Physica Status Solidi B 248, 2528 (2011).
14. Growth of carbon nanotubes on NiTi shape memory alloy thin films for improved thermal actuation.
BC Bayer, S Sanjabi, C Baehtz, CT Wirth, S Esconjauregui, RS Weatherup, ZH Barber, S Hofmann, J Robertson.
Thin Solid Films 519, 6126 (2011).
13. Use of plasma treatment to grow carbon nanotube forests on TiN substrate.
S Esconjauregui, BC Bayer, M Fouquet, CT Wirth, F Yan, R Xie, C Ducati, C Baehtz, C Castellarin-Cudia, S Bhardwaj, C Cepek, S Hofmann, J Robertson.
Journal of Applied Physics 109, 114312 (2011).
12. Support-Catalyst-Gas interactions during carbon nanotube growth on metallic Ta films.
BC Bayer, C Castellarin-Cudia, R Blume, C Baehtz, S Esconjauregui, CT Wirth, A Knop-Gericke, R Schlögl, A Goldoni, C Cepek, S Hofmann, J Robertson.
Journal of Physical Chemistry C 115, 4359 (2011).
11. Manipulation of the
catalyst-support interactions for inducing nanotube forest growth.
S Esconjauregui, M Fouquet, BC Bayer, S Eslava, S Khachadorian, S Hofmann, J Robertson.
Journal of Applied Physics 109, 044303 (2011).
10. Ultra-high density carbon
nanotubes on AlCu for advanced Vias.
J Dijon, H Okuna, M Fayolle, T Vo, J Pontcharra, D Acqiaviva, D Bouvet, AM Ionescu, S Esconjauregui, B Capraro, E Quesnel, J Robertson.
Tech Digest IEDM 33, 4 (2010).
9. Capacitive
Nano-Electro-Mechanical Switch based on Suspended Carbon Nanotube Array.
D Acquaviva, A Arun, S Esconjauregui, D Bouvet, J Robertson, R Smajda, A Magrez, L Forro, AM Ionescu.
Applied Physics Letters 97, 233508 (2010).
8. Growth of
Ultra-High Density Vertically-Aligned Carbon Nanotube Forests for
Interconnects.
S Esconjauregui, M Fouquet, B C Bayer, C Ducati, R Smajda, S Hofmann, J Robertson.
ACS Nano 4, 7431 (2010).
7. Carbon
nanotubes growth: From entanglement to vertical alignment.
S Esconjauregui, M Fouquet, BC Bayer, J Robertson.
Physica Status Solidi B 11-12, 2656 (2010).
6. Growth of high-density vertically-aligned arrays of carbon nanotubes by plasma-assisted catalyst pre-treatment.
S Esconjauregui, BC Bayer, M Fouquet, S Hofmann, J Robertson.
Applied Physics Letters 95, 173115 (2009).
5. Use of carbon nanotubes for VLSI interconnects.
J Robertson, G Zhong, S Hofmann, BC Bayer, S Esconjauregui, H Telg, C Thomsen.
Diamond and Related Materials 18, 957 (2009).
4. The reasons
why metals catalyze the nucleation and growth of carbon nanotubes and other
carbon nanomorphologies.
S Esconjauregui, C Whelan, K Maex.
Carbon 47, 659 (2009).
3. Patterning of metallic nanoparticles for the growth of carbon nanotubes.
S Esconjauregui, C Whelan, K Maex.
Nanotechnology 19, 135306 (2008).
2. Plasma assisted growth of nanotubes and nanowires.
H Griffiths, C Xu, T Barrass, M Cooke, F Iacopi, P Vereecken, S Esconjauregui.
Surface & Coatings Technology 201, 9215 (2007).
1. Carbon nanotube catalysis by metal silicide: resolving inhibition versus growth.
S Esconjauregui, C Whelan, K Maex.
Nanotechnology 18, 015602 (2007).