Department of Engineering

Bulk Superconductivity Group

Dr M. D. Ainslie, MIEEE MIET MInstP
Royal Academy of Engineering Research Fellow

Image of
Dr DurrellBE(Elec) & BA(Japanese) University of Adelaide 2004
ME University of Tokyo 2008
PhD University of Cambridge 2012

Tel: +44 1223 339838
Fax: +44 1223 332662
Email: mark.ainslie@eng.cam.ac.uk

Mark is a Research Fellow in the Bulk Superconductivity Group

News/Media

28/8/2012: Cambridge Network - News - Dr Mark Ainslie awarded a Royal Academy of Engineering Fellowship

15/8/2012: University of Cambridge - Engineering Department - News & Features - Dr Mark Ainslie awarded a Royal Academy of Engineering Fellowship

6/6/2012: University of Adelaide - Adelaide onLION - Alumni on the Move - Mark Ainslie adds Cambridge PhD to list of achievements

24/5/2012: 2012 Association of British Turkish Academics (ABTA) Doctoral Researcher Awards - 1st Place - Engineering & Physical Sciences

13/10/2011: European Society for Applied Superconductivity (ESAS) Prize Winner - Large Scale Applications

Publications

You can see a list of Dr Ainslie's publications here.

Curriculum Vitae

You can see Dr Ainslie's experience, skills and expertise, and prizes and awards via his LinkedIn profile:

View Mark Ainslie's profile on LinkedIn

Research Interests

Superconductor Modelling

Investigating and modelling the electromagnetic behavior of superconductors is crucial to the design of superconductor-based electrical devices. In order for these devices to be cost- and performance-competitive with conventional devices, the use of superconducting materials and the associated cooling system must be shown to possess improved properties in comparison to its conventional counterpart. Dr Ainslie is currently investigating methods to develop accurate axisymmetric and 3D finite element models of superconducting coils and bulks. He is also involved in the design and build of experimental facilities to verify such models experimentally.

Engineering Interactions of Conventional, Magnetic and Superconducting Materials

Research carried out to date on the electromagnetic properties of superconductors operating within complex geometries has produced a number of interesting results; in particular, how the use of hybrid combinations of magnetic materials and superconductors can affect the superconductor's electromagnetic properties. There is significant promise for magnetic materials to be used together with superconducting materials to further enhance the remarkable properties of these materials, and indeed a great deal of research has been carried out at the nanoscale level by Materials Scientists. However, there is a lack of such research on a macro-scale/engineering level, such as the reduction of AC loss in coils made from superconducting tape, which can be problematic in applications where a time-varying current and/or magnetic field is present, and shaping and enhancing the trapped magnetic field in bulk superconductors.

Superconducting Electric Machine Design

The use of superconducting materials can improve the overall electrical system efficiency, and in addition, superconducting materials are able to carry much larger current densities than conventional materials such as copper. In electric machines, in particular, increasing the current and/or magnetic flux density increases the power density, which leads to reductions in both size and weight of the machine. The expected improved performance and efficiency, as well as smaller footprint, in comparison with conventional devices has seen continued interest in introducing superconducting materials to not only electric machines, but also to other electric power applications, such as transformers and cables. Dr Ainslie is applying the results of the preceding investigations to an electric machine design, in order to produce a prototype design of an optimised superconducting electric machine with reduced AC loss (which means higher efficiency), high torque, and reduced weight and size. A major component of this research is the development of in-situ magnetisation techniques for magnetising the bulk superconductors in such a machine.

Keywords

Electrical engineering, superconductivity, electrical machines, finite element modelling, electromagnetic analysis, high temperature superconductors, low temperature experimentation, power system protection, energy storage, energy efficiency analysis