Unpublished Material:
Disussion Papers:
R. de Neufville and S. Scholtes (2006), Maximizing value from large-scale projects: Implementing flexibility in public-private partnerships
N.D. Savva and S. Scholtes (2005), Real options in partnerships: The perspective of cooperative game theory
S. Scholtes (1999), Active set methods for inverse linear complementarity problems
Theses, including PhD students:
S. Scholtes,
Introduction to Piecewise Differentiable Equations,
University of Karlsruhe 1994
Michael Stohr,
Nonsmooth Trust Region Methods and Their Applications To Mathematical
Programs with Equilibrium Constraints,
University of Karlsruhe 1999
Andreas Ehrenmann,
Equilibrium Problems with Equilibrium Constraints and their Applications
to Electricity Markets,
University of Cambridge 2004
Nicos Savva,
Real Options: Competition in Market Regulation and Cooperation
in Partnership Deals ,
University of Cambridge 2006
Published Material:
Journal Articles:
R. de Neufville, K. Hodota, J. Sussman, S. Scholtes (2008), Real Options to Increase The Value of Intelligent Transportation Systems, Transportation Research Record 2086, 40-47
R. Mason, N. Savva, S. Scholtes (2008), The Economics of Licensing Contracts, Nature Biotechnology 26, 855-857
L. Kuntz, S. Scholtes, A. Vera (2008), DRG Cost Weight Volatility and Hospital Performance, OR Spectrum 30, 331-354
L. Kuntz, S. Scholtes, A. Vera (2007), Incorporating Efficiency in Hospital Capacity Planning in Germany, European Journal of Health Economics 8, 213-223
T. Kuosmanen, G.T. Post and S. Scholtes (2007), Non-parametric tests of productive efficiency with errors in variables, Journal of Econometrics 136, 131-162
R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes (2006), Local convergence of SQP methods for mathematical programs with equilibrium constraints SIAM J Optimization 17, 259-286
R. de Neufville, S. Scholtes and T. Wang (2006), Real Options by Spreadsheets: Parking Garage Case Example, ASCE Journal of Infrastructure Systems 12, 107-111
A.V. de Miguel, M.P. Friedlander, F.J. Nogales, and S. Scholtes (2005), A two-sided relaxation scheme for mathematical programs with equilibrium constraints, SIAM J Optimization 16, 587-609
S. Scholtes (2004), Nonconvex structures in nonlinear programming, Operations Research 52, 368-383 (Matlab code related to this paper)
W.K. Ching, S. Scholtes, S.Q. Zhang (2004), Numerical algorithms for dynamic traffic demand estimation between zones in a network, Engineering Optimization 36, 379-400
H. Scheel and S. Scholtes (2003), Continuity of DEA efficiency measures, Operations Research 51, 149-159
S. Scholtes and M. Stöhr (2001), How stringent is the linear independence assumption for mathematical programs with complementarity constraints? Mathematics of Operations Research 26, 851-863.
S. Scholtes (2001), Convergence Properties of a Regularisation Scheme for Mathematical Programs with Complementarity Constraints, SIAM Journal on Optimisation 11, 918-936.
L. Kuntz and S. Scholtes (2000), Measuring the Robustness of Empirical Efficiency Valuations, Management Science 46, 807-823.
H. Scheel and S. Scholtes (2000), Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity, Mathematics of Operations Research 25, 1-22
L. Kuntz and S.Scholtes (1999), Economical Analysis via Data Envelopment Analysis and Operational Comparison of Hospitals (in German), Zeitschrift für Betriebswirtschaft, Special Issue 5/99 (Hospital Management), 187-206.
S. Scholtes and M. Stöhr (1999), Exact Penalization of Mathematical Programs with Equilibrium Constraints, SIAM Journal on Control and Optimization 37, 617-652.
A.A. Agrachev, D. Pallaschke, and S. Scholtes (1997), On Morse Theory for Piecewise Smooth Functions, Journal of Dynamical and Control Systems 3, 449-469.
D. Ralph and S. Scholtes (1997), Sensitivity Analysis of Composite Piecewise Smooth Equations, Mathematical Programming 76, 593-612.
S. Scholtes (1996), Homeomorphism Conditions for Coherently Oriented Piecewise Affine Mappings, Mathematics of Operations Research 21, 955-978.
S. Scholtes (1996), A Proof of the Branching Number Theorem for Normal Manifolds, Linear Algebra and Its Applications 246, 83-95.
L. Kuntz and S. Scholtes (1995), Qualitative Aspects of the Local Approximation of a Piecewise Differentiable Function, Nonlinear Analysis: Theory, Methods, and Applications 25, 197-215.
S. Bartels, L. Kuntz, and S. Scholtes (1995), Piecewise Linear Functions and Nonsmooth Critical Point Theory, Nonlinear Analysis: Theory, Methods, and Applications 24, 385-407.
L. Kuntz and S. Scholtes (1994), Structural Analysis of Nonsmooth Mappings, Inverse Functions, and Metric Projections, Journal of Mathematical Analysis and Applications 188, 346-386.
L. Kuntz and S. Scholtes (1994), A Nonsmooth Variant of the Mangasarian-Fromovitz Constraint Qualification, Journal of Optimization Theory and Applications 82, 59-75.
L. Kuntz and S. Scholtes (1993), Constraint Qualifications in Quasidifferentiable Optimization, Mathematical Programming 60, 339-347.
S. Scholtes (1992), Minimal Pairs of Convex Bodies in Two Dimensions, Mathematika 39, 267-273.
D. Pallaschke, S. Scholtes, and R. Urbanski (1991), On Minimal Pairs of Convex Compact Sets, Bulletin of the Polish Academy of Sciences, Mathematics Series 39, 105-109.
Books:
S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer 2012.
R. de Neufivlle and S. Scholtes, Flexibility in Engineering Design, MIT Press 2011.
M.J.D. Powell and S. Scholtes (eds), System Modelling and Optimization: Methods, Theory and Applications, Kluwer 2000
S. Scholtes, On Convex Bodies and Some Applications to Optimization, Anton Hain Verlag 1990