Department of Engineering / News / New research set to boost construction sector sustainability and productivity

Department of Engineering

New research set to boost construction sector sustainability and productivity

New research set to boost construction sector sustainability and productivity

A new collaborative research project involving Cambridge engineers aims to improve the sustainability and productivity of the construction sector.

Something as simple as allowing beams, columns and floor slabs to have the shape they need to take load, rather than the shape they need to be easily formed, allows a complete rethink of the way material is used in our buildings.

Dr John Orr

Funded by UK Research and Innovation (UKRI), under the Industrial Strategy Challenge Fund ‘Transforming Construction’, the three-year project – Automating Concrete Construction (ACORN) – will develop a holistic approach to the manufacture, assembly, reuse, and deconstruction of concrete buildings, leading to a healthier, safer, built environment.

The research involves Dr John Orr, Lecturer in Concrete Structures, who is working alongside colleagues at the University of Bath and the University of Dundee. ACORN will capitalise on the computational and robotics expertise of the research team, to create an end-to-end digital process to automate the manufacture of concrete buildings, capitalising on the recent proliferation of affordable robotics and bringing them into an industry ripe for a step-change in sustainability and productivity.

The construction sector is responsible for nearly half of the UK’s carbon emissions and concrete alone for 5% of global CO2 emissions. The widespread use of flat panel formwork for concrete leads to materially inefficient prismatic shapes for the beams, columns, and floor slabs in our buildings. This practice, which has been around since Roman times, is a key driver behind the high embodied carbon emissions associated with concrete structures. As much as half of the concrete in a building could be saved, if only we approached our use of the material in a different way.

The ACORN team are working towards creating a culture that is built on the concept of using enough material, and no more. The team believe that by using innovative digital tools and techniques to optimise the shape and reinforcement at the design phase, as well as using robotics to create bespoke formwork and reinforcement during construction, a new generation of buildings will begin to dominate – buildings that use material only where it is needed, and that are manufactured in safe, quality-controlled and highly productive off-site facilities.

“Something as simple as allowing beams, columns and floor slabs to have the shape they need to take load, rather than the shape they need to be easily formed, allows a complete rethink of the way material is used in our buildings,” said Dr Orr. “We can begin to ask exciting questions about their shape, what material they should be made from, how we can take into account whole-life value and how we should organise our design processes to take advantage. ACORN will answer all of these questions.”

Dr Paul Shepherd, Principal Investigator and Senior Lecturer in the University of Bath’s Department of Architecture and Civil Engineering, said: “ACORN is tackling the UK government’s construction 2025 targets head-on. By automating construction, moving it off-site, and developing a culture of using just enough material, and no more, the project will lower costs, reduce delivery times and dramatically reduce carbon emissions.”

ACORN is supported by 12 project partners: AECOM Ltd (UK); AKT II; Arup Group Ltd; Building Research Establishment Ltd; Buro Happold; Byrne Bros; Cambridge CSIC; Foster and Partners; Laing O'Rourke Ltd; McKinsey and Company UK; OPS Structural Engineering and Tonkin Liu.

To ensure the ideas of ACORN are taken up by industry, the partners will share their practical knowledge of the latest industry trends and will provide case studies on which to benchmark the research.

This article has been edited from the University of Bath website.

The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways that permit your use and sharing of our content under their respective Terms.